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Abstract

Essays in the Econometrics of Continuous-Time Finance

Federico M. Bandi 

1999

This dissertation is devoted to the study and empirical implementation of 

new methods in the econometrics of continuous-time finance. The first chapter is 

concerned with the nonparametric estimation of the drift and diffusion function 

of general continuous-time homogeneous stochastic differential equations. Min­

imal requirements are placed on the data generating mechanism, allowing for 

both stationary and nonstationary systems, and the available data is assumed 

to be a set of discrete sample observations. Econometric estimation proceeds by 

constructing refined sample analogues of unknown drift and diffusion function. 

Cross-restrictions on the functional forms are not imposed, nor is the existence 

of a time-invariant marginal data density and, in consequence, the new approach 

is robust against deviations from stationarity. We prove consistency of the point 

estimates and pointwise weak convergence to mixtures of normal laws, where the 

mixture variates depend on the chronological local time of the underlying semi­

martingale, that is on the amount of time spent by the process in the spatial 

vicinity of each point.

The second chapter focuses on the application of this new method to a well- 

known problem in empirical finance, namely the estimation of the short-term 

interest rate dynamics in a continuous-time framework. The approach to data 

analysis is twofold. First, a descriptive analysis of the time series is conducted 

using econometric estimates of the local time, which is treated as a spatial density 

function, along lines pioneered in Phillips (1998). Spatial densities (and various 

functionals of them, such as spatial hazard rates) are newly developed descriptive
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tools for data analysis that are applicable when the series is nonstationary or, 

more strictly, when stationarity cannot be guaranteed [c.f. Phillips (1998) and 

Phillips and Park (1998)]. Second, nonparametric estimates of the drift and 

diffusion function and associated confidence intervals are obtained, for the interest 

rate process.

The third chapter of this thesis discusses the finite sample performance of fully 

nonparametric estimators of the drift and diffusion function of general, poten­

tially nonlinear and homogeneous stochastic differential equations. We compare 

the estimators in the first chapter to those suggested in recent papers by Jiang 

and Knight (1997) and Stanton (1997). Theoretical justification for the different 

functional approaches is based on specific assumptions on the limit theory and 

the underlying process. The stringency of these assumptions in finite sample is 

investigated by evaluating the performance of the estimators in the presence of 

various simulated underlying processes.
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Part I

Econometric Estimation of Diffusion
Models [with P eter C. B . Phillips]

1. Introduction

Many popular models in economics and finance, like those for pricing derivative securities, 

involve diffusion processes formulated in continuous-time as stochastic differential equations. 

These processes have been used to model options prices, the term structure of interest rates, 

exchange rates, and foreign currency interest rates, inter alia. A recent introduction to some 

of these applications is given in Baxter and Rennie (1996). Stochastic differential equations 

have also been used to model macroeconomic aggregates like consumption and investment, 

and systems of such equations have been used for many years to model economic activity 

at the national level, as described in Bergstrom (1988). In all these applications, statistical 

estimation involves the use of discrete data. It is then necessary to identify and estimate 

with discretely sampled observations the parameters and functionals of a process that is 

defined in continuous time.

The stochastic differential equation that defines a diffusion process, like X t in (2.1) 

below, involves two components. These components measure the conditional drift. ft(Xt). 

and the conditional variation, er2(Xt), of the process in the vicinity of each point visited 

by Xt. The most general approach to estimating stochastic differential equations is to 

avoid any functional form specification for the drift and the diffusion term. In some cases, 

attention may focus on one of the functions and it is then of interest to estimate it in 

the context of the other function being treated as a nuisance parameter. A substantial 

simplification to the estimation problem is obtained by the commonly made assumption of 

stationarity. Indeed, under stationarity and provided suitable regularity conditions are met, 

the marginal density of the process is fully characterized by the two functions of interest 

[e.g. see Karatzas and Shreve (1991) and Karlin and Taylor (1981)]. This fact justifies 

some estimation methods that have appeared recently in the literature which exploit the 

restrictions imposed on the drift and diffusion function by virtue of the existence of a 

time-invariant density of the process [see, in particular, Al't-Sahalia (1996a,b) and Jiang 

and Knight (1997)]. Notwithstanding the advantages of assum ing stationarity, it would 

appear that, for many of the empirical applications mentioned in the preceding paragraph
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at least, it would be more appropriate to allow for martingale and other possible forms 

of nonstationary behavior in the process. In such cases, it becomes necessary to achieve 

identification without resorting to cross restrictions delivered from the existence of a time- 

invariant density and transitional density, and estimation and inference must be performed 

when such restrictions cannot be imposed, namely when the process is nonstationary. Of 

course, there may also be interest in testing either local or more general martingale behavior 

in the process.

The aim of this chapter is to construct a nonparametric estimation method for diffusion 

models without imposing a stationarity assumption. Our approach is simply a refined sam­

ple analog method, which builds local estimates of the drift and diffusion components from 

the local behavior of the process at each spatial point that the process visits. We assume 

that the process is discretely sampled, but we explore the limit theory of the proposed es­

timators as the sample frequency increases [i.e. as the interval between observations tends 

to zero, as in Florens-Zmirou (1993), Jacod (1997) and Jiang and Knight (1997)] and also 

as the total time span of observation iengthens. In technical terras this amounts to both 

infill and long span asymptotics. We give conditions for almost sure convergence of the 

proposed sample analog estimators to the theoretical functions and provide a limit distrib­

ution theory for the general case. The asymptotic distributions of the estimates are mixed 

normal and the mixture variates can be expressed in terms of the chronological local time 

[see Phillips and Park (1998)] of the underlying process, a random quantity that measures 

in chronological time units the amount of time the process spends in the vicinity of each 

spatial point. Our results also enable us to comment on the fixed time span situation. We 

confirm earlier finding that the diffusion term can be consistently estimated over a fixed 

time span [as in Florens-Zmirou (1993) and Jacod (1997), for example]. We also confirm 

that, in general, the drift term can not be identified nonparametrically on a fixed inter­

val without cross-restrictions, no matter how frequently the data is sampled [c.f. Merton 

(1973), Al't-Sahalia (1996a) and the discussion in Part II]. Despite this, by letting the time 

span increase to infinity, the theoretical drift term can be recovered in the limit, provided 

the process continues to repeat itself, that is provided the process is recurrent. Geman 

(1979) utilized the same property but assumed the availability of a continuous record of ob­

servations. To our knowledge, our drift estimator is the first fully nonparametric estimator 

which permits identification of the drift function by use of discretely sampled data, without 

relying on cross-restrictions based on the existence of a time-invariant marginal density. It

2
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is therefore robust against deviations from stationarity.

This chapter is presented as follows. Section 2 lays out the model and objects of interest. 

Section 3 gives some useful theoretical preliminaries. Section 4 contains a description of 

the methodology. Section 5 presents the main results and Section 6 concludes. Section 7 

provides proofs and technicalities. Notation is laid out in Section 8.

2. The M odel, A ssum ptions and O bjects o f Interest

The model we consider is the autonomous stochastic differential equation

dXt =  n{Xt)dt +  (r(Xt)dBt, (2.1)

with initial condition X q =  X  and where Bt is a standard Brownian motion defined on the 

filtered probability space (Cl, 53s , (53f )t>o,P)- The initial condition X  € L2 and is taken to 

be independent of {Bt : t > 0}. We define the left-continuous filtration

3* := cr(X) V = a(X , Bs; 0 < s < t) 0 < t < oo 

and the collection of null sets

N := {.V C n; 3G € §oc with N C G  and P(G) = 0}.

We create the augmented filtration

53? := a-(% UN) 0 < t < co.

The following conditions will be used in the study of (2.1). They will assure the existence 

and pathwise uniqueness of a nonexplosive solution to (2.1) that is adapted to the augmented 

filtration {9^}.

2.1 Assumption

(A) fi(-) and cr(-) are time-homogeneous, 95-measurable functions on 2) =  (I. u) with —oo < 

I < u < oo where 93 is the a-field generated by Borel sets on S . Both functions are at 

least once continuously differentiable. Hence, they satisfy local Lipschitz and growth 

conditions. Thus, for every compact subset J  = [l/H,H] with H  > 0 of the range of 

the process, there east constants C\ and C<i such that, for all x  and y in J ,

3
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and

|n(x) -  M \  +  |<r{x) -  a(y)| <  Cx\x -  y\,

l/*(*)l +  k(*)l < C 2{l +  |x|}.

(B) a2(-) > 0 on D.

(C) [Feller's (1952) necessary and sufficient condition for nonexpiosionj. We define V(a)

as

r s ' w rJO JO
dx)dy

S'{x)< t2(x )

where S'{x) is the first derivative of the natural scale measure.

2n(x)'
5(a)

ra  p i
= /  exp{ /  

JO Jo (T2{x)
dx}dy.

We require V(a) to diverge at the boundaries of 2 ,  i.e.

lira V (a)=  lira V (a)= oo .
a—1+ a—u~

Assumption (A) is sufficient for pathwise uniqueness of the solution to (2.1) [c.f. Karatzas 

and Shreve (1991, Theorem 5.2.5, page 287)]. Assumptions (A) and (B) assure the exis­

tence of a unique strong solution up to an explosion time [c.f. Karatzas and Shreve (1991, 

Theorem 5.5.15, page 341 and Corollary 5.3.23, page 310)]. Assumption (C) guarantees 

that neither I nor u are attained in finite time [c.f. Karatzas and Shreve (1991, Theorem 

5.5.29, page 348)]; and the same condition is necessary and sufficient for recurrence, mean­

ing that, for each c € (/,u), there exist a sequence of times {t*} increasing to infinity such 

that Xt, = c for each i, almost surely.

2.2 R em ark Global Lipschitz and growth conditions are typically assumed to guarantee 

existence and uniqueness of a strong solution to (2.1) [c.f. Karatzas and Shreve (1991, 

Theorem 5.2.9, page 289), for example]. We do not impose these conditions here because, as 

Al't-Sahaiia (1996a,b) points out, they fail to be satisfied for interesting models in economics 

and finance.

4
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2.3 Remark Geman (1979) requires the natural scale measure S(a) to diverge to oo as 

a  —*■ u, and to —oo as a —* I. Notice that this condition is only sufficient for nonexplosion 

and recurrence. Feller’s (1952) condition based on the function V(a) is necessary and 

sufficient. The following implications are easily derived [c.f. Karatzas and Shreve (1991, 

Problem 5.5.27, page 348)]:

S(l+) =  -oo =► V(l+) = oo

and

S{u~) =  oo => V(u~) =  oo.

Thus, under conditions (A), (B) and (C), the stochastic differential equation has a strong 

solution X t that is unique, recurrent and continuous in t € [0, T\. Xt satisfies

X t = X Q+ I* fi(Xa)ds +  f  (r(Xa)dBa 
Jo Jo

a.s., with J0r  E[X}}dt < oo.

The objects of econometric interest are the drift and diffusion terms in (2.1). These 

functions have the following conditional moment definitions:

rtx ) =  <\X, = X }  =

= lim ~ f  (Xt+K- X t)dP(Xt+k\Xt = x), (2.2)
^  h J[\Xt+h-Xt\<e\

•*<*> -

=  lim i  f  (Xt+h -  X tfd P {X t+h\Xt =  i ) .  (2.3)

Also,

lim h - lP(\Xt+h -  X t\ > e\Xt = x) =  0./i—*0

Loosely speaking, (2.2) and (2.3) can be interpreted as representing the “instantaneous” 

conditional mean and the “instantaneous” conditional variance of the process when Xt =  x. 

More precisely, (2.2) describes the conditional expected rate of change of the process for 

infinitesimal time changes, whereas (2.3) gives the conditional rate of change of volatility 

at x.

5
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3. Local T im e Prelim inaries

In what follows we introduce some preliminary theory regarding the local or sojourn time of 

a semimartingale (SMG). All of what is needed below is contained in standard treatments 

like those of Protter (1990) and Revuz and Yor (1991). Continuous-time stochastic dif-

comes within the ambit of SMG analysis.

The local time of a continuous SMG M  is defined as follows:

3.1 Definition (The Tanaka Formula) For any real number a, there exists a non- 

decreasing continuous process L\i(.,a) called the local time of M  at a, such that

In particular, |A/j -  a|, (iV/t — a)+ and (Mi — a) are semimartingales.

3.2 Lemma (Continuity of M artingale local time) For any continuous SMG M. 

there exists a version of the local time such that (t,a ) *-* L\[(t,a) is a.s. continuous in both 

t and a. Moreover, it can be chosen so that a L\j(t,a) is Holder continuous of order k 

for every k < 1/2  uniformly in t on every compact interval.

3.3 Lemma (The occupation tim e formula) Let M  be a continuous SMG with 

quadratic variation process [M]s and let La be the local time at a. Then,

for every Borel function f .  I f  f  is homogeneous, then the expression simplifies to

ferential equations like (2.1) have solutions that are semimartingales and hence the theory

Jo

f(M „  s)d[M]a =  /(a , s)dLxr(s, a)

f(a)LM(t,a)da. (3.1)

3.4 Lemma I f  M  is a continuous SMG then, almost surely

f t l [a,a+e{(M3)d[M}
JO

(3.2)

I f  M  is a continuous local martingale then, almost surely

6
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1
L M(t,a) =  Jim — j  1]a-e, a+e[(M,)d[M\a Va,£. (3.3)

The process Z,jv/(f,a) is called the local time of M  at the point a over the time interval 

[0, £]. It is measured in units of the quadratic variation process and gives the amount of 

time that the process spends in the vicinity of a. The chronological local time [from Phillips 

and Park (1998)] is a standardized version of the conventional local time that is defined in 

terms of pure time units. It can be easily derived in the Brownian motion case. From (3.3), 

the local time of a standard Brownian motion W  is

1L w (t,a) =  lim — / a.s. Va,£.
i —0 l e  J  0

Now, consider the Brownian motion B  = o\V  with variance <r2. We can write, as in Phillips 

and Park (1998),

LB(t,a) =  lim — /  ln B, - a\<s)<r2ds =  crLw {t, - )  a.s. Va,£.
£—0 IE  Jo (T

Since the quadratic variation of Brownian motion is deterministic, the chronological local 

time can be obtained as a scaled version of the conventional sojourn time as

  1 rt
L B{t,a) =  lim — / l (|B,_a,<e)ds =  <T~2LB(La) a.s. Va,f. (3.4)

s—0 J.£ J o

Equation (3.4) clarifies the sense in which LB{t,a) measures the amount of time (out of t) 

that the process spends in the neighborhood of a generic spatial point a.

It turns out that a similar expression can be defined for more general processes such as 

those driven by stochastic differential equations like (2.1). In this case, the measure dpf]s 

is random and equal to a2(X3)ds. Hence, given the limit operation, a natural way to define 

the chronological local time of a process like (2.1) is by

Lx (t,a) = Jim i  j f  l [0t a+£[{Xa)o2(Xs)ds =  ~ ^ L x {t,a) a.s. Va,t. (3.5)

This is the notion of local time that we will use extensively in what follows.

The following result generalizes to diffusion processes the limit theory for Brownian local 

time [see Yor (1983), Revuz and Yor (1994) and Phillips and Park (1998)]. This result will 

be useful in the development of our limit theory.

7
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3.5 Lemma (Limit theory  for th e  local tim e of a  diffusion) Let X  satisfy the 

properties in Section 2. Let r and a be fixed real numbers and treat {L x(t,r  + j ) —L x(t,r)}  

as a double indexed stochastic process in (t,a). Then, as A —» oo

\ y \ { L x {t,r + ^ )-L x{ t,r )}± < & {L x{ t,r ),a )

where <8 (t,a) is a standard Brownian sheet independent of X .

4. E conom etric  E s tim a tio n

Assume we observe the process X t at {f =  t i , t2,..,tn} in the time interval [0,T], with 

T  > To > 0, where To is a positive constant. Further assume that the observations are 

equispaced. Then, {X t =  X&nT , -^2An,T, X ^ n T, ..., X nA„,T} 8X6 n observations on the 

process X t at {h  =  Anj \  h  =  2An,r^3  = 3A„,r, ...,tn =  nA„,r} where A„,r =  T/n .

We want the number of sampled points (n) to increase as the time span (T) lengthens.

We also want the frequency of observation to increase with n. Thus, we will explore the 

limit theory of the proposed estimators as n —► oo, T  —» oo and An,:r =  T /n —* 0. We will 

also comment on the fixed T  case where T  =  T.

We propose the following estimators for (2.2) and (2.3).

E n i s t X 'An,T~x  M _______ I_______ ^»n,i.T(*An, r ) - l r y  _  Y  121
_ _   t= l  ̂ /in.T ' ' r7*n r(*^n  T)&n T 2-ij=0 I t(* ^n ,r) j+ ^ n .r  h jA n .rlji '

< T '( n ' T ) [ X ) ---------------------------------------------------------V *2 - ,=  l hn.T I

:=  E r=i K ( ^ ^ ) ^ , r ( ^ n,T) (41)
I / f  X,An.T~X \

2^t=i r  )

r ’ Ti xr t X,An.T~X M ________I_______^ mn,r(*^n.r) —I r y  y  . 1\
 ̂   2-t=l V /l„,T ' •Tlnij'(lAn 7*)An j* 2- j=0 1 +^n.T

P(n,T)\x ) ~   1------ 5--------- jTT---- 1Z----------------------------------------------V 'n  -Vl 'An.T 1 \
2 - t= i  /in T ;

, =  (40)

In the above formulae, {f(iAn,j')j} is a sequence of random times defined in the following 

manner:

t ( i A „ , r ) o  =  i n f { t  >  0 :  | X £ -  X tAn_T\ <  e „ , r } ,

and
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t(iAn,r)j+i =  in£{t > i(zAn>T)j +  An,r  : |Xt -  X u ^ T\ < £„,r}-

The number mn>7'(iAr,i7’) < n counts the stopping times associated with the value -X,An.r 

and is defined as
n

where 1^ denotes the indicator of A. The quantity is a bandwidth-like parameter that

is taken to depend on the time span and on the sample size. We call this parameter the

spatial bandwidth. As usual, the random time t(iAn<T) is defined on Cl and takes values on

[0 ,oo). Further, {f(zAn,r) < £*} 6  where O ^.is a right-continuous filtration defined

as fl 
u>r
The kernel function K(-) that appears in (4.1) and (4.2) is assumed to satisfy the 

following condition.

4.1 Assum ption The kernel K(.) is a continuous differentiable, symmetric and nonneg­

ative function whose derivative K! is absolutely integrable and for which

[  K(s)ds = 1,
J  — 00

and

sqK(s)ds < 00, 

for some q > 1.

4.2 H euristics of the Estim ation Procedure The method hinges on the simultaneous 

operation of infill and long span asymptotics. The intuition underlying the construction of

(4.1) and (4.2) is fairly clear. By using observations over a lengthening time span as well as 

of increasing frequency we aim to ‘‘reconstruct” as well as possible the path of the process 

in terms of the key objects of interest, the drift and diffusion functions, which vary over the 

path. The idea is twofold.

First, the use of local averaging and stopping times in the algorithm is designed to 

replicate as well as possible the instantaneous features of the actual functions. Notice, in 

fact, that the components o^ r (X ^ rt I.) and /Iraj '( X,7\ iL r ) in (4.1) and (4.2) are defined 

as empirical analogs to the true functions for all i. Further, the estimates d ^ T(Xi/s -liT) 

and ^  consistent for o-2(Xi^nT) and n i X ^ r )  as the random quantity

9

J  -O C
K 2{s)ds < 00, SUpK(s)<C3,
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mT,ir(i'Anix) goes to infinity Vi. Under suitable conditions on the bandwidths, mnj ( i A nj') 

diverges to infinity almost surely when T  —* oo. In particular, given appropriate choices 

of the smoothing sequences, divergence occurs when the process Xt is recurrent, as it is 

under Assumption 2.1. In this case, the process almost surely hits any point in its range 

an infinite number of times, i.e. Px{Xt hits z at a sequence of times increasing to 00} = 1, 

Vx, z (here x represents possible initializations of the process X t).

Second, we apply standard nonparametric smoothing to recover the two functions of 

interest from the crude estimates '(Xi&nT) and Mn,r(-^«An,r ) calculated at the sample

points.

5. M ain R esults

5A. Some Prelim inary Theory

We start with the following preliminary result. Throughout, we will assume that Assump­

tions 2.1 and 4.1 hold.

5.1 Theorem  (Almost sure convergence to  th e  chronological local tim e) Given 

n —► 00, T  fixed ( =  T ) and f  —* 0 (as n —> 00) in such a way that jA— (An f ) a = 0(1)* n.7 *
for some a  € (0, 5), the estimator £^=1 K(—^ 5 — ) converges to L x(T ,x) a.s.

a ,r  n,T

5.2 Rem ark Theorem (5.1) is general enough to be applicable to transient processes. 

The following corollary illustrates the difference between the two cases when we let T  go to 

infinity.

5.3 Corollary I f T  —* 00 with n but £  =  A n<r  —* 0 and hn T —> 0 (as n — cc) in such 

a way that ^ £ ^ ( A n,r)a =  0 a.3.(l) for some a  € (0 , g), and —» 0 . then

T ~  ^ K ( * ^ - r— - )  I x (sup{t: X t = x},x). 
hn,T “ti,T

Further, if the process is recurrent, then Lx(sup{£ : X t =  x},x) = 00 a.s.

5.4 Remark In applications it is often conventional to normalize T  to 1. This implies 

that the admissible bandwidth hn,T is proportional to n~k with k 6  (0, g).

10
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5B. Function Estimation of the Diffusion

We next develop the asymptotic theory for the diffusion estimator (4.1).

5.5 Theorem (Almost sure convergence of the diffusion estimator) Given n —* oo, 

T  —*• oo and h n j  " 0 (as n ,T  —► oo) such that —► 0 and (Aw,r)tt =  Oa.a.(l)

for some a  € (0, 4), and provided sn,T —► 0 (as n ,T  —* oo) such that —► 0 and 

L-£̂ '1.x^(An,r)^ =  Oa.j.(l) /or some 0  € (0, ^), the estimator

E ^ K I ^ X ^ l r P ^ . r )  j ,  ,

 v  Kr  i--------------^*=1 K (“ K t~"‘

where

^n,r(X>An.r) = m n r(iAn,r )An,r ^  [^(»A„.r)J+An.r ~ ^ (.A n,rJj]"«

and tr/iere the sequence of stopping times {t(iAn,r)j} j  =  1. 2 ,.. satisfies 

t(i&n,T)a =  inf{t > 0 : \Xt -  X iA^I < £n,r}.

and

t(i&n,T)j+ 1 =  inf{f >  t(iAn,T)j  +  ^n .r : \Xt -  ^«A„.r | <  -n ,r }?

for all i.

5.6 Theorem (limiting distribution o f the diffusion estimator) Assume n —► oo. 

r — 0 0 , h„,j — *  0 (as n ,T  — * oo)  such that - *  0 and (An,r)Q = Oa.a.(l)

for some a e  (0,4). Also, assume £n^  —► 0 (as n ,T  —* oo) such that -* 0, and• *fi,r
=  0^ ,(1 ) /or some 3  € (0, J).

— j j  e2
1/  hn,r =  o(fn,r)t £n.TLx(T,x) —* 0 and —> 0 , then the asymptotic distribution

of the diffusion function estimator is driven by a 'martingale ’ effect and has the form

] j£n'T^ n ^  ffin.r)O ) ~ o2^ ) }  -1 N  (0,2o-4(x )). (5.1)

1/ hn,T — o(fn,r). a-^  0 and ^ T<» —* oo, fAen £Ae asymptotic distribution
en,T y /^n .T

of the diffusion function estimator is driven by a 'bias ’ effect and has the form

11
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^  * /2  ’ ^ g?n,T)(J ) -  o2^ ) }  AT (o,4y?* (o-'(x))2') , (5.2)
£n,T '  '

tfe re  ^  =  - 2 J Z c f Z ,  1“  “  (4 1 ll«l<l}) (^(IH sn) * *  =  °-2666-
— a a e2If K ,t  =  0(£„,r) with hn'T/£n,T -*<p>0, en>TLx{T ,x) 0 and ■/n'T -* 0 , then theV^n.T

asymptotic distribution of the diffusion function estimator is driven by a *martingale ’ effect 

and is of the form

y £zhZx 7 ^ {S^ T’w  ~ 172(1)1 S  N  (0, m“‘t4(i)) • (5-3)

« * «  #♦ =  4 H o  / H ) ’/ ;  /(*/-,v ?  K ( a ) K ( e ) d z d c * _ _

/ /  hntT = 0 (en>T) with /in,r/=n,r —► <z> > 0 , v^ v(T|f)A—  ^  0 and )",r —► oo, thenenT y/&n.T
the asymptotic distribution of the diffusion function estimator is driven by a ‘bias ’ effect 

and is of the form

^  *3/2 ’ ^ g?n.T)(x ) -  ^ ( x )} -v  (o ,4  (d* +  <Z>V +  m>) (o-'(^))2') - (5.4)
“n.r '  '

where

ri* = g / “«  j r .  j r .  /r«  / “  K(->Kto(«-*>l{|.-^|<i)(^)l<|»-*.isi> («-*)*
xl{|o-«c|<l}(*>—<9c)1{|6-«e|<l}l(0<i/<o)l(0<u<b)̂ ot̂ <̂ 5̂ v<

9  r °  2\a -  b\abK(a)K(b)dadb,
J - o o  J —oc

and

/ oo roc /-oo roc
/  /  /  “ (a - 0c)K (u)K (c)l{|a_,^<1}l (O<6<u)l (o<^<a)dMudadc.

•oo J  —oo J  —oo J —oo

5.7 Rem arks The statement of Theorem 5.6 uses the terms ‘bias’ effect and ‘martingale’ 

effect to refer to the principal terms that govern the asymptotic distribution. These effects 

are revealed in the proof of the theorem. The essential factor governing the magnitude of 

the two effects is the relation of the observation rate, An,;r> of the process to the spatial 

bandwidth parameter, en,r . If An,T is small relative to e„tr ,  so that s^ r / v/A „,r —» oo, 

then the bias effect dominates the asymptotics. In contrast to conventional nonparametric 

regression situations (HSrdle, 1990), the bias effect turns out to be random, as it is in 

the nonstationary autoregressive case studied in Phillips and Park (1998). If the spatial

12
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bandwidth £n^  is small relative to the observation interval and T/y/& n,r —*• 0 , the bias

effects are eliminated asymptotically and the martingale effect governs the limit theory. 

Theorems 5.5 and 5.6 state the a.s. consistency and convergence in distribution of

observations. It is easy to see that if we fix T  (T = T  with An f  —♦ 0), the previous results do 

not change: that is, the diffusion function estimator is still consistent and distributed in the 

limit as a mixed Gaussian distribution with mixing variate depending on the chronological 

local time of the underlying diffusion process. Assume hnj' =  o(er,ij’). When T x(T ,x )  = 

Op(l), that is when T  =  T, the asymptotic distribution can be written as

5.8 Relation to  Florens>Zmirou (1993) There is an important similarity between (5.5) 

and the limiting distribution obtained in Florens-Zmirou (1993). It is useful to recall her 

results before commenting further.

the diffusion function estimator as we enlarge the time span and increase the frequency of

(5.5)

under the following conditions on hn f  and en f .

and

On the other hand, if

and

then the 'bias’ term dominates and

(5.6)

13
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5.9 Theorem  (Florens-Zmirou (1993)) Assume we observe Xt at {t = t \ , t2, —,fn} in 

the time interval [0,T] where T  can be normalized to 1. Also, the data is eqvispaced. 

Consequently, (Xt =  X&n, X2a„, -^3A„, — are n observations at points {fi = 

An, £2 =  2An, tn = An}, where An =  1/n . The estimator

~2 t \ 1 E t= l  X-i/n? £,2 2
T(n)(^) =  T -------------^ T j ------------------------------

2^i=i Ml*./*-*!</»«}

provided the sequence hn is such that nh^ —► oo and nh* —* 0. Further, if nh£ —» 0 , then

^ { ^ ( x )  - A x ) }  i  M N

where Lx(  l,x) is the local time of the process.

What Florens-Zmirou calls local time (Lx(.,.r)) is what we refer to here as the chrono­

logical local time (Zx(.,x)) of the process.

Provided nh\ —*■ 0, the bias term disappears asymptotically and the limiting distribution 

is the normal distribution to which the ‘martingale’ term converges. It is not surprising that 

the limiting distribution in Florens-Zmirou (1993) resembles the limiting distribution of the 

estimator proposed here for choices of en f  and hn f  that make the bias term negligible 

[and provided hn j  =  o(en ̂ )]. Note, in fact, that in the fixed T  case the estimator that 

we suggest here can be interpreted as a convoluted version of Florens-Zmirou’s estimator. 

In particular, it can be written as a weighted average of estimates obtained using Florens- 

Zmirou’s method. In effect, a2n ̂ (X,An f ) can be rearranged as follows Vi,

mn f(«A„7)—l

= mn^(iA n f )AIJif 51 iX‘bAn>?)J+An.r  -

An,f 1 {|XjAn_-X,An_|<«„T}

It is easy to prove that when nh* —» oo Florens-Zmirou’s estimator is still consistent but, in 

the same manner as our own limit theory, the ‘bias’ term drives the asymptotic distribution, 

namely

/
1 {*?«)(*) - ^ ( x ) } - ^  A/iV

(* (* )) ' 
(Lx { l,x))

V

where <p* =  - 2  J Z  f Z  1“ ~  ( ^ l{|tt|<i>) (^ { |6|<i}) dadb =  0.2666.

14
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5.10 Remark When we let T  —► oo, the normalizations in (5.1), (5.2), (5.3) and (5.4) are 

random because of the presence of the local time factor Lx(T, x)5. In general, therefore, the 

rate of convergence will be path dependent and will depend, in particular, on the sample 

trajectory of the conditional variance function. The precise rate of convergence in (5.1),

(5.2), (5.3) and (5.4) depends on the asymptotic divergence characteristics of the chronolog­

ical local time Lx{T , x) of the process {Xt; t > 0}. When X t is a standard Brownian motion 

(i.e., fi(X) =  Q, and <r(X) =  1), then Z x {T,x) =  Lw {T,x) =  T iL w i^ x /T ^ )  =  Oa.a{

In this case, which is explored further below, the convergence rates of d*n T){x) are y

and y -pr- in (5.1)-(5.3) and (5.2)-(5.4) respectively, and are not path dependent.

5C. Function Estimation of the Drift

We now turn to the analysis of the drift function.

5.11 Theorem (Almost sure convergence to the drift term) Given n —* oo, T  —* oo

and hnyT —<>0 (as n ,T  —> oo) such that —► 0 and =  Oo.a.(l) for some

Q € (0, ^), and provided sn,x —» 0 (as n ,T  —» 00  ̂ such that —* 0, ^X/J'TX' (An,r)^ = 

Oa.j.(l) for some $  6  (0 , 5 ) and £ntT L x(T ,x)  —<■ 00. the estimator

---------------- —x z — ----------- - /*(*).

vrith

 ̂ r»»n,r(‘̂ n.T)-l

£n,r(*»An.r) =  mn,r(tA„,T)An,T ^  

where the sequence of stopping times {t(iAn,r)j} j  =  1,2,.. satisfies 

t(iAn,r)o =  inf{t > 0 : |Xt -  X,AB>r| < £r>,rh

and

t(iAn,T)j+ 1 =  inf{t > t(iA n,T)j +  \ i,t  : |Xt -  X t&nT| < en,r}?

for all i.

15
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5.12 Theorem  Given n —► oo, T —♦ oo, hnyT —* 0 (as n ,T  —*• ooj such that —► 0 and

n,T)a — 0 o.a.(l) for same a € (0, |) ,  and provided enj- —> Q (as n ,T  —* oo) such 

that 7ZF IXe ^ X)( ^ T f  =  O a.s.( 1) for some 0 € (0 , 5 ) and £n^ L x {T ,x )  00, the 

asymptotic distribution of the drift function estimator is of the form

y/en,TLx(T,x){fi(rl<T)(x) -  /i(x)} -1 .V (o, ^ ( x ) )  (5.7)

if hn,T =  o(e„,r). I f  V r  =  0{en,T) with hnj / £ n,T <P > 0, then

\/en ,T L x(T ,x){ fi^T)(x) -  /x(x)} N  ^0 , ^ 0o-2(x) j  

where 9t  =  L f Z c t i - l v Z K ( . a ) K i e ) d « b u k .

5.13 R em ark (the fixed T  case) If we fix the time span T  the drift function cannot 

be identified. In particular, the drift estimator would diverge at a speed equal to -^== [c.f. 

Theorem 10.1 in Part II]. However, if we do not constrain the time span to be fixed, by 

virtue of recurrence, there are repeated visits to every level over time and this opens up the 

possibility of recovering the true function by using a single trajectory of the process over a 

long time, through a combination of infill and long span asymptotics.

Since the local dynamics of the underlying continuous process reflect more of the features 

of the diffusion function than those of the drift, only the diffusion function estimator can 

be meaningfully defined over a fixed time span of observations [c.f. Geman (1979), Merton 

(1973), Al't-Sahalia (1996a), inter alia, and the discussion in Part II].

5.14 R em ark Due to the very slow rate of convergence of the variance term in the 

estimation error decomposition for the drift, the bias term never plays a role in the limit. 

The rate of convergence is yjen^L x {T , x). This rate cannot be defined in closed form apart 

from few specific cases [see Remark 5.16]. Technically, it is achieved by choosing a slowly 

decaying sequence sn,T so that enjL x { T ,x )  00 [see Remark 5.16].

5.15 Rem ark The drift estimator converges at a substantially slower rate than the diffu­

sion function estimator. This is due to the smaller order of magnitude of the infinitesimal 

conditional volatility of the process.

16
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5.16 R em ark It is useful to consider the limit theory' in the Brownian motion case in more 

detail. This is an interesting special case as it allows us to obtain “closed-form” conditions 

for the bandwidth £n^  and shows the applicabilty of our method to general processes of 

the type described in Section 2. Further, when the underlying process is Brownian motion, 

it is possible to illustrate the rate of convergence (as T  —► oo with n) in a more precise 

fashion. Consider the Brownian motion B  =  erW with variance a2. The main assumption 

that ensures consistent estimation of the drift estimator is

-n,r-£e(T, x) “-4 oc

for all x  € 91. By using properties of Brownian local time, as indicated in Remark 5.10, we 

can write

LB( T ,x ) = T l' 2L w ( l ^ 2)

where a = f . Hence,

en,TLB{T,x) = e n,TT 1/2Lw ( h ^ )  =  £ „ jT 1/2Op(1)

and

en,TT112 — oo => enj Z b (T,x ) *4 oo

We want the window width £n,T to tend to zero at a slow rate, and T  needs to outweight 

e^ T. This condition does not pose difficulties and is consistent with the other requirements 

on the bandwidths. The more general case can be easily accommodated by assuming a slowly 

decaying en,T capable of taking into account plausible rates of divergence of L \(T ,x )  to 

infinity in order to guarantee that en<TLx(T,x)  ^4' oo.

The rate of convergence in the Brownian motion case is easy to determine. For example, 

we can express (5.7) as

S  (£»r{t,0) ) - i jv  (o, Iff2 ( i ) )  =  M N  . (5.8)

The local time at the origin plays an important role in determining the asymptotic variance, 

\cr2 (x) /L iv(l,0), that appears in this mixed normal limiting distribution.

17
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5.17 Rem ark At(n,r)(Jf’iAn,r ) ^(n,r)(-^«An,r) *n (4.1) and (4.2) are defined as follows:

1
V -{n ,T ){X iA „,r) ~ mn,r(ẑ n ,r)A Tl,7’ ^  1 [-^(iAn.xJj+An.r "^£(*^n.T)j]’ (5*9)

j= 0

and

where the sequence of stopping times {i(z'An,r)j} j  =  1, 2,.. satisfies 

f(*An,r)o =  inf{t > 0 : \Xt -  ^«An.r l < <Tn,r},

and

t{iAn<T)j+i =  inf{t > t(zA„,r)j +  A„,r : \Xt -  ^iAn.r l £  ffn ,rh

for all t. We know that formulae (5.9) and (5.10) can be rewritten using indicator kernels, 

namely

proportionality in the asymptotic variances need to be modified accordingly. For example, 

the factor of proportionality would be equal to K 2(s)ds, rather than 5 , in the case 

of the drift provided hnp =  o(£n,r)- As for the diffusion function estimator, the factor in

of the kernel could bring about an improvement in efficiency. As an example, in the case of 

the Gaussian kernel K 2(s)ds = < 5 -

5.18 Rem ark The estimators presented and discussed in this chapter are sample ana­

logues to the true theoretical functions. They are written as weighted averages based on 

convoluted smoothing functions. Our asymptotic results readily apply to weighted averages 

based on simple kernels. In this case, by virtue of the generality of our formulations, only 

straightforward modifications to the theory outlined here are needed.

fi(n,T)(XtAn,r) =
1 5Zj=l {̂|-KjAn>T-*iAn>rl<£n.:r}f'‘̂ (.;+l)An,r

"T £ j= i 1{|jrjAnr-x ,AnTi<en.T}

and

1 l{|-KjAn-r-*.An>rl<£n.r}^0 +l)An.r Xj&nT\

If a generic smooth kernel is used in place of indicator functions, then the constants of

(5.1), for instance, would be equal to 4 K2(s)ds, rather than 2. An appropriate choice

18
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6. Conclusion

This chapter shows how to identify and consistently estimate both the drift and diffusion 

term of a general homogeneous stochastic differential equation under broad assumptions on 

the data generating process. The methods can, in principle, be extended to multi-equation 

specifications although important difficulties associated with the curse of dimensionality 

arise in that case in the estimation of local time.

The methods presented here are also useful in assessing the asymptotic behavior of 

functionals of homogeneous diffusions. A typical example that is important in financial 

applications is the price of derivative securities. In this case, the limit theory that is obtained 

here for the drift estimator is ideally suited for exploring the limit behavior of functional 

estimators of fixed-income securities prices. The reason is that the value of these securities 

depends on the drift of the underlying process even under the no-arbitrage restrictions 

imposed by martingale pricing. In fixed-income pricing the underlying process is generally 

a short-term interest rate process. The next chapter applies the methodology suggested 

above to the analysis of the spot interest rate dynamics in continuous time.

7. Proofs

7.1. Proof of Lemma 3.2

See Revuz and Yor (1991), Corollary 1.8, page 217.

7.2. Proof of Lemma 3.3

See Revuz and Yor (1991), Exercise 1.15, page 222.

7.3. Proof of Lemma 3.4

This is a straightforward consequence of the occupation time formula [c.f. Lemma 3.3] and 

the right continuity in a of Lx(t,a)  (See Revuz and Yor (1991), Corollary 1.9, page 218).

7.4. Proof of Lemma 3.5

The first part of the proof follows Yor (1983). Start by considering a simple application of 

Tanaka formula [c.f Definition 3.1], namely

XT  =  X T + j \ (X' >o)dXs + ±Lx(t,0),
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(X£- o ) + =  ( X o - a r  + j \ {Xt>a)dXs + ±Lx(t,a). 

Subtract the second expression from the first expression, giving

X + - ( X £- a ) +
1

=  Xq- -  (Xo -  a)+ + J  ̂ l(o<x,<a)dXs + ^(Lx(t,Q) -  Lx(t,a)). 

Equivalently, we can write

X+- (X t - a / \ r
=  Xq — { X q - a/X)+ -*r l(Q<xm<a/\)dXs + - ( L x ( t , 0 )  -  Lx (t,a/\)).  

Now, multiply through by \/A. This gives.

n/A(X+ - ( X £-  a /A)+)

=  \/X(Xq — (Xo — a/A)+) -+- n/A f  l(o<x,<a/\)dXs ■+■
Jo

+i\/A (L x(t,0) -  £,.*(£,a/A)).

Apparently,

sfX\X? -  (Xt -  a/A)+| + >/X|X0+ -  (Xo -  a/A)+| < 2-^=-
v A

Hence, the asymptotic distribution of ^VX(Lx ( t ,0 ) -L x ( t ,  a/X)) is determined by the term 

v'A/o' !(0<x.< a / X ) d X s as A -» oo. Further,

^  Jo 1(°-x«-a/A)ĉ s =  ^  fQ Mo<x.<a/x)KXs)ds-hy/X J  1 (o<x.<a/x)<T{Xs)dBa- (7.1)

Now notice that \/A / 0£ l(o<x.<a/A)Ai(XJ)ds 0 as A —*■ oo. In fact, by the occupation time 

formula [c.f. Lemma 3.3] we can write

[  M o < X ,< a /X ) f i ( X a ) d s
Jo

=  >/A J ° °  l ( Q < b < a / X ) - ^ I ^ L x ( t 7b )d b  

=  >/A J ° °  1(0 <xb<a)-^q^jLx(t,b)db,

20

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

and, setting Ab =  c, this becomes

JL  r  1 ^(C/ A) r (f ; \ \ j
n/A J -oo (° - c- a) 0-2 (C/ A) x (  ’ ^

By the properties of the local time [in particular, the map a —► Lx(t,a)  is a.s. continuous 

and has compact support -  c.f. Lemma 3.2] and the dominated convergence theorem, it 

follows that
T00 M(c/A) r MO) m

/ .o o  1(0* * °  <x2(c/A) C/A)<ZC c^(0) 
as A —♦ oo. In consequence.

1 r  ,  M CA )  r /.I z n j  «.«. n
n/A J - oc 1( ° ^ a)(r2(C/A)I x (  ,C/ } °-

This, in turn, implies that the asymptotic behavior of (7.1) is determined by y /\  Jq 1(o<x . <a/\)a (X*)dB.l. 

Now define

M *  ( t ) : =  V x  f  
Jo

M x is a continuous martingale with quadratic variation process {[A/a]£ : t > 0} given by

Again, by the occupation time formula, the properties of the local time and dominated 

convergence, we get

[A /A ]t =  A /  l(o < x . <a/X)^{J^a)ds 
Jo

/oo
1(0 <\b<a)Lx{t<b)db

■oc
roo

=  /  l ( o < c < a ) L x ( t , c / \ ) d c
J -oc

^ a L x (t, 0 ).

Setting

T x =  inf{s : [Mx\a > t},

Bt =  M xx is a Brownian motion and M x =  B[M*\t- In facti &t is the so-called Dombis, 

Dubins-Schwarz (DDS, henceforth) Brownian motion of Mx [c.f. Revuz and Yor (1994, 

Theorem 1.6, page 173 and, for an asymptotic version, Theorem 2.3, page 496)]. It follows 

that
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=  \/aBLx(tt0)

= ®(Lx(t, 0),a),

where Lx(t,x)  =  limc_o j  Jq ![*, x+e[°'2(-^s)^s a-s- Vx, t and 3  is a standard Brownian 

sheet.

So far, we have proved convergence of the marginals of a generic family of probability

measures to corresponding marginal limit distributions. It is easy to verify the compactness 

of The proof follows standard arguments and is omitted here for brevity [see Billingsley 

(1968)]. Weak convergence then follows. In particular, as A —* oo, the process (indexed by 

(i,a)€<*2 )

(Xt ; Lx (t,a) : ^ { L x (t, j )  -  Lx (t,Q)})

converges weakly to

(Xt ; L x (t,a);*B(Lx (t,0),a),

where (93 (s, a) ; (s.a) e  91+) is a standard Brownian sheet independent of X  [For the 

independence property, see Revuz and Yor (1994, Exercise 2.12, Chapter XIII)]. Then, a 

simple generalization of the previous finding to spatial location r ^  0 gives

l V \ { L x (t,r + j ) - L x (t,r)}±<B(Lx ( t ,rU ) ,  

as A —► oo, and this proves the stated result.

7.5. P roof o f Theorem  5.1 

First, consider the quantity

L
r _ L K ( ^ - ^ ) d s .

o n.T n,T

From the occupation time formula, it is easy to see that

r ff  1 K ( X s - x  d[X]a _  1 1 =
I h — '  h — '/r2/V  \ I L _ ( /, — T *Jo n,T n,T \Xs) J -oo “n.T n,T (a )
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Consider the transformation a —► q where q — (a — x)/hn f .  The previous expression 

becomes

C  Klq)a * l l w  + x )L x(F ' k"-Tq + X)dq-

As in the proof of Lemma 3.5, notice that, for a fixed t, the map a L f  is a.s.

continuous with compact support by the properties of the diffusion function and the local 

time. We know, in fact, that for any continuous SMG il/, there exists a version of the local 

time such that the map (a, t) •—► Lf  is a.s. continuous in t and a [Lemma 3.2]. Hence, as 

n —f oo and hn j .  — * 0 , and since K(q)dq =  1, by dominated convergence, we have

L  + Z)A> “  S ^ j 'Lx{7-* > •

= Lx (T,x).

Thus, to prove the stated result we just have to prove that

-  f T r - K< ^ l £ )‘'s 0 -n,T n,T J0 hn,f hn,T

under the stated conditions. This is equivalent to proving that

1 r(i+l)T/n Xi& 7 - x  X „ - x
r -  £  -  W — r 1— ) ~

1=0 ^ 'T/ n n ,r  " r .,?

- ^ k ( ~ i r ) +  r r K (I,1! n'f.  * ) a4‘ o* (7-2)
n,T n,T fln T hnT

But, the left side of the previous expression is bounded by

I ^  r « + i ) r /n  X tA _ - x  V _ x
^  r  [K(— ) - K ( ^ - f ) ] d s

V f  ^  JiT/n

, ^ n , f  lx.r/ ^ 0  _  x

n,T

^n,r
K(- /i T’nti

+ ^n .r
^n,f

K( * nAn.? _ X ,
n ,T

[ ^  * , _ *  ( X . - X iA_r1 n>

< f j L \ _ i _ g r
V ^ T y  hn , T i ^  JiT/n

iT/n

" - 1 - ( i+ l) f /n

^n,T /in ,T
ds\ + 2C3An,r

^n.f

n,T

where XtJ is on the line segment connecting X5 and X,An ? . Define

k f  = max sup
* -n ‘An>?< S< (.+ l)A „>?

(7.4)
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By the Holder property for continuous SMGs [e.g. Revuz and Yor (1994, Exercise 1.20, 

Chapter V)]

t > 0 : lim sup > 0
* Jo

(7.5)

where 3̂ is Lebesgue measure on 5R+ and (7.5) holds for every a  <  In turn, (7.5) implies 

that
K_

(7.6)-J^ ~ a = O a.a.{ 1)

M '
for every a < 5 . Hence, if hn f  is such that f ) a =  0(1) for some a £ (0,5 ), then

n .T

Kn,T Kn,T

hn,T { ^ n f Y  fln'T 

as n —► 00. In view of (7.7) we have

— °a.s. ( 1) (7.7)

I J- \ rr’ I
K,T

=  K' ( ^ + ^ ( 1 )  ,
^n,r

(7.8)

uniformly over i =  1..... n. It follows from (7.4) and (7.8) that (7.3) is bounded by

\ t )  hn,f “ 0 J'T/n
K ' f ^ — i + o M (l)

J  (  X 3 X

hn,T

hn,T

■+■ O a .s(l)

da -t- 2C3^n.T
^n,T

da ■+■ 2C3
hn,Ts B fc i r

=  (r f) K («+ r * (T-«*».?+ x ) dq+2C3T ^

for some constant C 4 , by virtue of the integrability of K ' and the continuity of Lx . Since

LX (T,p)dp + 2C3^  
n,r

f

• 0 and ^ —*■ 0 by (7.7), the bound goes to zero as n —► 00 . This last observation
n , T

establishes (7.2) and thereby proves the stated result.

7.6. P roo f of Corollary 5.2

IfT  —*> 00 and ~ = 0, then Z)"=i K ( ^ ^ — ) converges to Lx (oo,x) provided

h^j- —* 0 (as n —► 00) in such a way that (An,T)a — Oa.a.(l) for some a  £ (0 , | )  and
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—> 0. But Lx(oo,x) =  L x (su p { £  ; X t =  x},x) a.s. [Revuz and Yor (1994, Proposition

1.3, Remark 2, page 214)]. And, if the process is recurrent, then Lx((sup{£ : X t =  x}),x) = 

oo a.s.

7.7. Proof of Theorem 5.5

We start by considering the expression

fe* T.U k -  <72(x,An.T))
&n.T TS<XiĈ n.T~X \
hn.r 2 -,t= l v fin.T >

V '71
n̂.T ' *n,T '

First, we examine (7.10). We want to prove that for some s > 0

(7.9)

(7.10)

f e £ L i K ( ^ p ) < T » ( ^ T)
.Y,a x

(7.11)
^ n .r  TSf X'&n.T X \

^ - ‘=1 ^  hn,T >

£  <’«•*• ( ^ ( ^ ) I/2- s) + 0 -  ( & ? )

For the terra in the denominator we can utilize the argument used in Theorem 5.1 and

Corollary 5.2. As for the numerator, we look at the quantity

j r  K ( X ' ^ - r : V ( .Y iA .,r ) -  fT ~-K{^X£) ̂(X,)ds (7.13)
ftn . r  " n , T  Jo fb i ,T  h n ,T

Given the properties of K(-), the assumptions on cr(-), and proceeding as in the proof of

Theorem 5.1, (7.13) is seen to be bounded as follows

1 h  r {'+l)T/n[ K X j ^  J .)a2[ x  ) _  K i X j ^ _ £ )a2{X.)\di
’"H | i=0 J *T/n ,T Hn,T

+ pXK(X̂ - T~z)Ax,
^n,r «n,r Kn,T hn,T
1 & +l)T' " [K(X ^ x )a2{ X iĈ - x  <!2

^ T \ f ^ J i T / n  l b i ,T  h n ,T

1 r ( i + l ) T / n  y  — -r Y  —  t

+ r -  E  I  W- f — -  K(~r—\ ~ q JiT/n hn,T <hi,T
+  2 C z O a . s X ^ )  

hn,r
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1 ^  rd+DT/n

V r  ^  JiT/n
K (

^ntr

/i rpn,r

n - l  r(i+l)T/n

e /
l=o ^iT!n

K(
X 3 - x

hn,T
)(a2(X3) - o 2(Xi^ T)) ds + 2 C30 a.s. ( ^ )  

hn,T

02 (X3+Oâ .(l))d8
s  f e ) i r i K' ( ^ + °“ (i)

+«n,T0 a.3. ( Ix ( r ,x ) )  +2C3Oa.3. ( p Z )
tbij

< Q  Oa.s (Lx(T,x)) + Kn,T0 a.3. (LX(T,X)) + 2C3Oa.3. ( ^ £ )

where Kn<r  =  max,<n supiA _<1<(i+1)A _ \X3 -  X,a J as before. Under the stated condi-
f t . T — —'  ‘ n ,T

tions as n, T  —► oo, that is h n j  —»0 and

L x{T ,x ) t
hn,l - ( A „ , r ) Q = O a . a . ( l ) (7.14)

for some a  € (0 , 5 ) and —* 0, the three terms are negligible in the limit and formula

(7.11) holds for some e > 0 such that a <  ̂— s. Next, we prove that

f f  KTt K ( m g l ^ r ) * - ' )  +Oq.,. ( % * )

/ o V j *  ( f t ? )  ^  ( ^ ( A . t ) 1̂ )  + 0 -  ( £ ? )

i x ( r , x ) + 0, a.(i)  ̂ ;

By virtue of the occupation time formula, Lemma 3.5 and the fact that hn,r  —* 0, we have

f  - ^ r L K ( & x ^

= rj —00
K (q) Lx  (T,qhntT +  x) dg

=  Lx {T,x) + o a.4.(l), 

giving the required result for the denominator of (7.15). It remains to verify that

L /T"- K (~ t— - ) (^{X 3)ds =  <t2 (x )Lx (T ,x )  + o a.3.( 1). 
0 "n,r «u,T

Using the occupation time formula again, we have 
r T  1 / v  _ . \  r r

(7.16)
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=  K(q) Lx (T,hn,Tq +  x)dq 
J —OO 

=  Lx (T,x) + o a.s.(l) 

=  a2(x)Lx (T ,x )+ oa.a.(l),

establishing (7.16) as required, and then (7.15) follows. We now turn to the analysis of 

(7.9). It is sufficient to prove that

, f>r*n,r(«An,7- ) - l  r v  V- 12
1 y '  l^t(iAn.r)j+An.r ^£(»'

nVr(*An,r) "  A„,rE L £(iAn,7*)j "l~An,T * ~ 2 ( v  \ / i \  / t  1 *r\----------------------------------------a (XiAnT) = o a.,.(l). (/.17)
j=o

in order to verify the stated result. By stochastic differentiation we have

dX] =  2X adXa +  a1 {Xs) ds =  2X afi {Xa) ds +• 2X aa {Xa) dB3 +  <r2 (Xa) ds,

so that

y 2 _ y-2
A t(iAn.r ),+A n.r  A t(iAn,r )J

/•d»^n.r )j+ ^n .r /^(iAn.rlj+A„,r r t(i&n.T)]+&n.T
/  X sfi(Xa)ds + 2 X a(r(Xa)dBa +
'l(i&n.T)} Jt(iAn_T)j

Further
rdjAn.rJj+An.j- /-£(iA n.r)j-(-^n.r

/t(»An.r )j

SO that

2

/•tftAn.rJj+An.j- /•((iAn,r)J-(-An,r
^ ( ‘An.rh+An.j- = ^(«A„,t)j+  /  fx(Xa)ds-r I ar(Xa)dBa, (7.18)

■̂ t(«An,r)j+An,r ^t(«An,T)j

— ^ (iA n .rh + A n .r  ~  ^ t(«An,7-)J+An,r^ t(«A n,r)j +  *^£(«A„,r).>
[ rdiAn.rh-t-An.r rqiAn.rh+An.r

=  ^£(»An.r )J+An.r  - ^ t ( « A n,T)J - 2 ^ £ ( iA n.rh  / .  A /i(*«)<&  +  /
| -̂/£(tAn,T)j •'d«A„.r)j

r<(«^n.r)j+A„,r /  . /•£(iA„,rh+A„,r ,  ,
= /  2 ( * ,  -  X,(iAn r) ) /i(jr.)ds +■ /  2 ( * ,  -  Jf,(iAn.r ) ) <x(Xs)d£s

Jt(i&n.T)] '  -'‘(•An.rh
/•K ^n.r )j+A„,r 

+  /  ^ ( X J d s .
J t (iAn *r

Then

[^^(tAn.j-Jj+An.r ^(tAn.rJjj ^(^ftAn.r )An,r 
r£(«An,r)j+A n>r  /-£(iA„,r)j+An.i-r^^n,T)j+^n,T , , f^l^n.TIi+^n.T , ,

=  /  2 ( * .  -  Xt(tAn>r)) /,(Xs)ds +  /  2 (X . -  Xe(tAn>r)) <x(X4)dJ3s
J£(*^n.r)i J£(tA„,r)j

/•d‘̂ n,r)j+^n,r

27

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

It follows that

1_____ ^ ^ > - 1  [jc,tiAj T).+AnT -  X t{iAnT)j

mn,r(iA„,r) j=o A„,t
- ^ ( X iAn,r )

1 ,t(*An.T)i +An.T , x

' £(«An,T)j

m«.r(«A».r)-l ^(iAn.rJj+An,
+

mnr7’(iAn,T)A„,T

1

■ ' r^^n.Tij+^n.T , ,
£  /  2 ( X , - X , ( iin r ) ) <x(*,)dfl,

Jt(iAn.T)3 V ’

mn,T(i&n,T) 1 t̂CtAn.rh+An.T
m  / /A  \ a  E / - <r2(A-iA .,r ) d amn>r(iA „tr)A n,7’ 7tfl • L£(«An.r)j

mr,,r(jAn,r )A„,r^ ^  A.An.r)^

mn.r ( iA n ,r ) - l  .( ( iA n .r ^ + A ^ r

<T2(Xi ) - ^ 2( ^ (tAnr)j) (is

+
*’ ' /•tl*(An,Tb+“ n.T r

j =0 JW&n.T)}

+
1 T »n .r(^n .r)-1  /•t(iAn,r )j+ A n,r  , x

n V r O A . . ^  E
+C50q.s.(Kt»,t )

= CsOa.s. («n,r) +  (£n,r)
^  "Vr(»An.r)-l yt(iAn,r)j+A„,T

+ O n
J7in,r(lAn,r)Af,,r

rci*A».r)j

j — Q •*£(*^n.r)j
<r(X3)dBs (7.19)

It remains to determine the order of the last term of (7.19).

Define (/£(,A„,r)j+A„.r — /((iA^^h+A” r  <T{Xs)dBs, which is measurable with respect to 

S £(iAn.r)J+An.r> where 9f|(iAntr)i+AB.r  =  i A  € 3  : 4{*(*An,r)j +  An,r < £*} € 3 t+Vt > 0} 
for all j  < nin^r- Further,

E  (yt(«An.r)j+An,r)

and, by the Ito isometry,

/ \ /  ft(i&n,Th+&n.T \
^ ( '4 i,r)j+^".r — var ( ^t(*An,r)j+An.T) ~  ^  \ I o ( X 3)ds J < oo,

V '  V^An-Tb /

for all j  < rrinj. So, ^t(tAn,r )i+An,r ^«(iAn.T)i+An.r ) ^  a martingale difference sequence 

with zero mean and variance Invoking a strong law of large numbers for

martingale differences [e.g. Hall and Heyde (1980, Theorem 2.19, page 36)], we have
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53 y£(«'A„,r)j +An,7mn,T(i&n,T) j=Q

rf(iAB,r)j+An.r 
2 3  /  cr(Xa)dBa a-2  0 as n, T  -* oo,

n Jt{iA„mn,r (iAn,r ) —  J t(iAn,r)j 

as mn,r  —* oo (Vi). We now explore the rate of convergence. Consider,

I "*«.r(*A «.r)-l f t (iAn,Th+An,T
— 7JT VA  1 3  /  o-(Xs)</5srti„,r(?An,r)A„,r ^  M i An.Th

A n .r  \ p n - l  1 r ( i+ l ) A n , r  _ /  v  u n
1 7 7 2 , j = i  1 {|XjAn r - X ,An r |<e-n.T} J ^ . r  cr{Xa)dBa

A "  T  I S  E " . l  l ( l - « , i „ , r - X i n  r i < t . , r t

= s i ?  g - l ‘ 1« ^ . . T- ^ Tia . , r t  J $ T ' - T < X .)dB ,
An.r v “n i
2Cn.r ^ J  =  l {l-^jAn,x --'f.An,T l<«n,r}

First, analyze the numerator of this expression. Write,

X ,a  T- /  1 r ( j+ 1  )An .x \
W " r M  =  ^  v ^ W ^ r l /  <**.)<».\ —n,i j=l JjAn.r /

.  ,  v  . . .

[nr) —1

9 /F—̂  5 3  _tl''jAn>r-A.An.r l̂ c'n.rt I
-y /^ n .T  j= l J ]A n.T

1 r ( i+ i ) A „ , r

1{l;fjAn,r -A',An,r l<cvr} J  ff(Xa)dBa.

Un 'p*'T is a continuous martingale whose quadratic variation process [U„,rjr is

[TM*1 — 1 Hj+lJAn.T
[Un ,rn'r lr =  4 7 — 5 3  1{|XjAn T-X,An r |<£n.r } J  (T{Xs)ds

n’r  j=i JjAn.r
[nri—I

=  I T T  £  1{ l ^ n r -x tAnr|<e-n.r}<T2(x iAn.r +Oo.i .(l))A „,r
’ j=i

=  ^ 7  1{|Jf.-JfiAntr|<c„.r }ff2C‘X'« +  (1))ds +

=  | i ( 'T , X iin ,r ) + 0„ . ( l )

=  9 0’2 (-^«An.r ) - ^ ( r ^ ^ t A n, r )  ‘• '° a .a . (1 )«

by virtue of (3.5). Now, as in Theorem 3.4 in Phillips and Ploberger (1996), expanding the 

probability as needed, we have
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and then it follows that

/  l A„,r ^[nr]-l ,  r t i+ l) V r  \ j d
F=— ; ------ ;------ /  A n.V ^r' ^ j = l  1{I^An,r -Jf.An,Tl<^.r> JjAn,r «{*■•)<&•

\ jL {T ,X ^ nT)enJ  ---------------- A n .r^n -11-------------------------------------------
\  2en,T " J —1 —̂ *^n,TI—en .r}

=  O a.a. ( l ) .

This result implies that the bound (7.19) becomes

Ca(KntT +  £n,r) +  ^9Kn,TOa.a. ( « / =7
L{T,Xi£^ T)£n,T t 

\jL(T,XiAn%T)en,T t

‘Li- n h,r  c c c i i m r . f ^ n

\J L(T,Xt&n j. )en,T

^ 1/ 2 - 6

=  °a .s(l) + ° ( 1 )  + ^ . 1  I T  1 0

A 1 /2 - 6

since niT 0 by assumption and in view of (7.6). This proves the stated

result.

7.8. Proof of Theorem 5.6

We write the estimation error in two components as follows:

—:--------------------- :—y  ---------- a  (x)
An.r  t y / ‘An,r \
T Z J  L ,i= \ hn.T )

= &  S . .  K l ^ X ^ R r U . A . . , - )  &  £ L .  K ( ^ f V ( X . A . . r )
A n . r  I T !  * l A n . r ~ X  \ & n .T  V ' T l  m  ' ^ » A n . r  ~ X \

hn.T ^ * = 1  '  hn.T '  /»n,T ^ * = 1  '  A n .r
'    ■■  '

term V

An.r V>w iy /  '^lAn.r ~ x > An.r v~»n iy /  ^ lAn,r ~ J \
/in.T 2-ri=l 1 /in.r '  /»n. r  ^ * = 1  '  /»n,r ''   '

term B
=  term V  +  term B.

Roughly speaking this is a decomposition into a bias term B  and second effect, V. We start 

with the bias term B. Combining the two fractions constituting B, the numerator of the 

term is
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By the mean-value theorem, the occupation time formula, and using the same approach as 

in the proof of (7.11) above, we find that

&n,T V "' Xi&n.T ~  x )2a{x*)(r'(x*)(XiAn T -  x)
hn,T

= T ^ -  [ T K- ( ~ r ~ ~  +°a.s. (1)1 2 cr (/(X s ,x )  + O a.3. (1)) X
rtn.r Jo \  hn,T J
xa  ( f (X a,x )+ o a.a. (1)) {Xa -  x +  oa.a.(l))ds +  oa.3. ( l x ( T , x ) (A n ,r)1/2_£j

= r °  K (^— - )2a ( f{a ,x ))a  (f(a,x)) (a -  x)Lx (T,a)da
hn,r 7-00 hn,T

+oa.a. ( l x (T,x)(An,T)1/2- e) ,

for some e > 0, and where x* = / { X ^  t ,!)  € [XjAn r ,x] Vi. If we multiply by f ~ ,  then 

the first term becomes

r - ( j r -  r  K (2 — i)2 < r ( / ( < i , i ) ) f f '( / ( o . i ) ) ( o - i ) £ * ( r ,o ) < ( a
Hn,T \ ' t n ,T  J - oo “ n . r

= A -  r  W ^ ) t o V M ) < r ‘ W a , x ) ) ( ^ ) Z x ( T , a ) d a
J—oo ™n,T \  "n ,T  /

roc
=  /  cK (c)2o-(x )o-,(x)Z,x (T’, x 4- hn,Tc)dc +  oa.a.(l)

J —OC

= f °  cK(c)2 i x ( r , x  +  fcBlrc)dc +  oa.,.(l)

= J ~  cK(c)2 j (Lx (T,x  + V r c )  -  Lx(T,x)) dc +  oM .(l), (7.20)

since cK(c)dc =  0. By Lemma 3.5 and neglecting the term of smaller order of magni­

tude, (7.20) has the following limiting form as functional of a  Brownian sheet *8 :

/_ 0OCK(C)4 ( * ( * ) )  2 y /h ~ ^ {LX{T' X + hn'TC) L x(T ' X))
dc

4 ( i f )  L ^ c)^ L x ( t ' x + k -t c )

^ 4 ( ^ t ) / ° °  CK(c)® (^ ( r ^ )* c)dc (7-21)

=  4 ( ^ M  \ /L x (T,x) cK(c)»(l,c)dc.
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Now, define G(u) =  cK(c)dc, and integrate cK(c)*B(l,c)dc by parts, giving

f  cK(c)©(l,c)dc
J -OC

=  G(c)‘B(l,c)|!?0o-  [ “  G(c)dB(l,c)
J  —OO

= -  r °  G(c)<i»(i,c)
J —OC

=  B( f°°  G(c)2dc)
J  — OC

=  B(¥>/4) (7.22)

where 9  =  — J ' ^  2|a — b\abK(a)K(b)dadb. In consequence,

B (^4ip (rr'(x)) I.v(r,x)j,

where B is a standard Brownian motion independent of Lx(T,x)  and 9  is a constant of 

proportionality equal to 2 ( / , / )  where ( / , / )  is called the “energy’ of the function f(s)  = 

sK(s), i.e. ( / , / )  =  -  |a — 6|a6K(a)K(6)dad6 - see Revuz and Yor (1991. Lemma

2.7, Chapter XIII). In turn.

^ x ( T , x )
( f i n  r )3/ 2 I  & n .T  r S - r X , * n . T  x \’ V 7 ^ L , = i K ( — -)

^ ( o - ' ( x ) ) 2^

= N  0̂ ,4 9  ô-'(x))  ̂ .

B

Next consider term V :
An.r I /v  ' l̂An,T ~r \ f ~ 2

An.r i^ /-y«An.r x\
An.r -̂>*=1 ' hn.r *

The numerator can be written as

- ^ , 1)

32

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

A „  T  n T ~ x ,  1 ( I ^ A n r -X iA n r l< f n . r } f  [ { X ( j + i ) T / n  -  X j T / n f  ~  ^ 2( X i T / n ) ^ n , T

- ^ 2^ K ( — r r z  ) 1K t  ~  hn,T E j = l  1 {|XjAn r -X iAn>T|<e„.r}

By Ito’s lemma [see the proof of Theorem 5.5]

(X U+l)T/n ~  X j T / n ) 2 
r (j+DT/n fU+DT/n

= I 2 (X a -  XjTfn) jj.(X3)ds + 2 (Xs — X jT/n) cr(Xa)dBa
JjT/n JjT/n

rU+DT/n

JjT/n
Hence,

ru+iyt/n ,
/  (T2(Xs)ds.

JiT/n

AnT - Z ,E j = l  l {\X}*nT- X ^ nT\<sn.T}T \(X(j+DT/n- X jT/n)2 -<rHXiT/n)&n,T
h '„  >bn,T V r  E"= I 1{|XjAnr-X ,Anr|<£n.r}

_  An,r ^  rs ,X tAn T -  x, E j = i  1 {|xJAn>r-x,An>Tl<«n.T}T [ / jliyn)T/ {^ (X s)  -  (T2{XlT/n)) ds 
 2 ^ K (— j— — )-----------------------------------------------------------------------------------
V r  hn,T E"=l 1{|XjAnr-XlAnr|<en.T}

(An.7-)

, ^ , T \ h „ , X i A nT - x xE ”=il l {|XjAnr-x,Anr|<€n.r }T [/jT/n1)T/ri 2 (** ~ 'V /n )  <r{Xs)dBa
+ T ~ : 2 ^ K (— /TTT- )V r  /ln .T  E ”= l 1 {|XJAn,r - X lA n r i<£n,r}

^  - —     -  -  -  * *  ^

(Bn.r(l))

, A n , r  ^  „ f X i A n,T -  x , E "= 1 L 1 {|X,ABiT-X lAn>r|<eB.T}T [ / j r / ^ 77*  2 (X * ~  X jT /n) / * ( * « ) * ]
A /  - ' L / V*n 1

h n ,T  2^=1 1 {|XjA tiT - X ,A n r |<c-n.r}
> „ : : '

(C„.T)
=  An,r +  B„,x(l) 4- Cn,r. (7.23)

These three terms comprise an additional bias effect, A „ j\ a martingale effect. Bn.r(l), 

and a residual effect, Cn,r- As we shall see, depending on the bandwidth choices, either 

An,r  or Bn,r  may dominate. First, examine ^ j B n(r(r), which takes the form

£ 7 B"-T<r)

y f e  E j = l  1{|X j A n J - x « ^ r | < g , . r } y S  ljf/nT/n 2 (x « -  X j T / n )  <r(Xs)dBi
An.r -i
2e„,r 2 - .j= l  M I X ;^  T - X <An T l<£n.r}
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The martingale Bn,r(r) has quadratic variation process which can be analysed as follows, 

using the same approach as that employed in deriving (7.11),

[B„T |r
i r  A n J  ^  ) x

4 V \ / ^ n ,T ^ b i ,T  J h n ,T  V r

cEj=i 1 { l - y J A n ,T. - x , A 7i .r i < g n , T } 1 {lA:j A n T - x f c A n .r | < £ n , r } [ l % t )T ln A ^  ~ ^T/n) V(*,)rfs]

{^^Sn.T E j = l  en.r}) i^2sn,T E j = l  ^{l^jAn>7- — ̂ k in jI^ n .T l)

(  1 V  f [TA J [ {Tr],  tr t X a - X w t X u - X ,= 7—  /  ds duK(—  )K (- t------ ) x
\ b n , T j  JO Jo r i n j  ftn.T

_________ itT d b l(jX6 —X,l<gn.r >1 {|X1,-Xu)<£n.Tl(r4(-y b + °a-5.(l))_____________

( r i j  f a  1 {|AT6 - - ^ i < e n .T } d b  +  O a j ( l ) )  ( s j ^ :  f o  1{ | J f » - X , | < e n .T } < f t  +  ° o . « ( l ) )

■r®a.a(4)

= r  r ° ° d s d u K ( ^ ) K ( ^ )  x
W r /  J —oo J —oo h n ,T  h n ,T

d b l {lb_ s{<£n r > l {|6_ u |< eB r } (74 ( 6 ) I x ( T , 6 ) L x ( r r , s ) I x ( r r ,  u )
X   - - - ----

+0.,.(1). (7.24)

Let

s — x . u — x-  a and  ------=  e.
hn,T hn,T

Then, (7.22) is

I I  dadeK{a)K{e) x 
J  —00 J -o c

e^T f^oB d6l {|fc-x-aAn.rl<en.r>1{|6-x-«/»n.rl<en.r}cr4(6)'£'-?f(:r’ b)L x (rT ,  x  +  ahn>T) L x ( r T , X -r efln,T ) 

( s i?  .Too 1{|b-x-oAn.r |<fn.r }^A-(r, b)<afj l{|6-x-ehn.r |<eBfr> Ix (r , 6)dfc)

+®a.a (1)»

and setting

b — x
£ n ,T

this becomes
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/oc f-rOQ
/  dadeK{a)K(e) 

*00 J—OQ
roo

1-0O r f z l { |2_a^ |< 1>1{ |2_e V Z |< 1}°4 (x )-L^ ( r ’ x  +  zen,T)Lx (rT, X +  ahn^ )L x (rT,x +  e V r )  
X ----- ---------------  l i l ------------------  -------------------------------------------------- ------

( j  / - o o  1 {,s _ a ^ | < 1>^ ( : r ’ X +  Z^ n , r ) ^ J  ^  / - o o  1 { |z_ e ^ Z 1< n ^ ( r ’ X +  Z^ T ) d z  

+°a.s(l)-

Now, if hn<T =  o(en,T), then

, o . . „  4 , , ( Z x ( r T , x ) f  
1B"'r |r  -  ^  W  1^ )  -

^  V r  =  0 (e„,r) with V r /£ n ,r  - » 0  > 0, then

[B„.T] r - 2V V ) ^ p £ pLx(T,x)

where

[°° [*°° dadeK(a)KW (
u  u  ^  ( j  i (l, ^ , s „ « te )  ( i  r .  i ( i . - « i <

/OC r + 0 0  £  rOC

/  dadeK(a)K{e)~ / <kl{|*-«a|<i}l{l*-*e|<i}
00 J  —OC -  J —oc

1 f°° /,+0° r°°
-  / /  /  £/aded2K (a)K (e)l{l2_«al<1yl{|2_0e|<1>
Z J — o o J —OO J  —oo
i /•<» r(s+l)/<t> Az+l)/<t>
■Z /  /  /  dadedzK(a)K(e).
-  7-00 Jlz-l)/d> J(z-\)l<t>

9* =

'( * - l ) /0  J ( j - l ) / 0

By earlier arguments [e.g., the proofs of Lemma 3.5 and Theorem 5.2] this implies that

Is * t L x <.T,x ) I   B j H l )   |  _« jV  (Q 2 ir , ( j ) j  (J , J 5 )

V f e E i . K  ( % ^ ) /

if K ,t  =  o^n.r), and

£l̂ £i U r ^ K X . . - * ) ! ^V ^ r L i= iK (  ^ ;r  ) j

if K i,t  =  O(e'n.r) and hnyT/£n T Next, examine A„,r :
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A n,T

V r  *n,r £ j= l  1{|XjAnT-XtAnr|<e„,r}

V r  ^  v ,*iA n r  -  * ,£ " = /  1{|XjAn r -X,An T\<en,T}T [ j J {°2(Xa) ~ ^ ( X jT/n)) ds
Z , K( j r z  > 'hn'T 7^1 b n *  £ j = l  1{|XjAn r -X iAn r |<en.r}

I Aw’r  V  K (XiAn-r ~  X) ^  1{l-yJATI,r -X ,An r [<c-n.r } ( v 2(XjT/n)  -  a 2{XiT/n))

K t  ^  K t  £ i= i  l{!x,Ati.r -x ,Aa.r i<,„.r }

= CloOa.a.(«n, r ) x ^  X ] K (—^ — —) +/in.r “  "n,T

t A„.T y ,  K  X <An. r  - I , S ? - l  1 {l*Jan,r - . f .Jv r l< ^ .i- |2ir(:1:i ) >  ( z i j )  (X >TIn -  -y iT/^)

where K„,r has its usual meaning and x*7 =  /  ( X j T/n, X i T/n)  € [Ajr/n^tTVn]- Then, 

proceeding as in the derivation of (7.11), we find that

A „,r

1 r 1
= —  /  d s K ( ^ — =)■

V r  JO «n,r
« n , T  

+Oo.a(l)

_  1 r *  du l{lu_ ^ £nT}2cr(f(u.s))cT '(f(u ,s))(u-s)
- j r z  ^ r r * ----------------- 1— F o-;------------- -T , r f  -w  l x (t , u)Lx (t , s)V r  y_oo V r  i-oo 1 { N - » l < = - n . T l I x ( T ,  u)du

J _  Z’7  -  X ) a f e  So d u l l lx u- x . , < Sn, r ^ ( / ( X u , X 3)) * \ f ( X u, X . ) )  [Xu  -  X . )

h n 'T  r i r  foT  1 { |X u -X .|< £n. r l d “

+Oo.a(l)-

Let
s  — X . U — X=  c a n d  = a
K i,T £n,T

then

7 ~ A ^ t£n,T

r°° 2? r  i^ o  1 {[u-x-tAn.rl<en,T}2<T (/(«»* +  c /^ r))  tr (/(u ,x  +  c/i^r)) (u -  x -  ch„,r)
=  f K f c ) - -

J — OO 2frt, r  H e  l{ |u -x -c /i„ ,r!< e n, r }-̂ X (T , u)rfu
x l j f  ( r ,  u)L;c (T, x 4- chniT)dudc
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r o c

=  /  K(c)
1{|a_c »̂ilzi|<1}cr (f ( x  + °Zn,T, a: +  cfcn.r)) (/(x  +  aen<T,x  + din?)) (a -  c j= j)

J -oo 2 J-oo 1 fig ^ ^ l o ^ x  +  a ^ d a
II »„ T J

1 (-00
1 {Ja—11 ‘n.T

xLx{T , x  +  aen̂ )L x{T , x  + chnrfdadc + oa.s(l)

f ° L d a l ri hnT ,<r(x)o-'(x) fa — Ct2̂ )
,oo {|a _ c_!hZ:|<i} \  £n-r /  _  _

=  /  rfcK(c)---------------- - " T , ------------ --------- --------- --------- (L x (T ,x  + aen,T) -  Lx (T,x)) Lx (T ,x)
J —OO X iX \T , X) ■+■ Oa.s. (1)

because l{|g|<i}5<i3 =  0. Hence, if /in.r = o(en.r), using Lemma 3.5 and proceeding as

in (7.21) and (7.22) above, we find that

-n,r

where

^ A n j  ±  N  (o, V  (a '(x ) ) 2 L*(T ,x)) .

=  ~'2 ~ b\ab dadb

= — J  J  \a — 6| abdadb =  0.2666,

by direct calculation. Then.

g*9* 1 O nT T ff xan,T \
'"n'T \  hn.T ^-*=1  ̂ hn.T '

Next, if hn^j =  0 { s n,T) and hn,T/£n,T —* 0 > 0, then

pl=_ f°° dal /i„T o-(x)o’ (x) fa — c-a^-l

/ »  v ^ 7r J - ° °  { |a - c — |< l}  v '  '  '  \  f n . r  J
dcK(c)------------------ =- --------------------------------

oo L x ( r , x ) + o 0.3.(l)
x  ( L x { T , X  JrO£nj ' )  — L x ( T , x )) L x ( T , x )

=  2 f a  
\ tti J°°  dcK{c) Q J  dal{|a_0C|<1}.̂  (a — 0c) (Lx (T,x + a£n^ )  — Lx(T,x))

+°a.s (1) 

d J  dcK^  Q / d a l { l« -0ci< i>^  ( a - 0c) <8(1, a)

Now, define G<t>{u) =  K(c)(a—0c)|l{ |a_<pc|<1}dcda. We proceed as in (7.22) above

and integrate

J  dcK(c) Q  y °°  d a l ^ . , ^ ^  (a -  0c) » ( 1, a)
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by parts to obtain

/  d c ( /  rfaK(c)§ 1{l“-<»ct<i> C° — <?c)^ ^C1-0)

=  G 0 ( a ) ® ( l , a ) | « o o -  f °  G * ( a ) d © ( l , a )
J —OO

=  -  r  G * ( a ) < f B ( l , a )
J —00

= B ( J *  G ^a fd a )

where

Hence,

** =  5 J'-oo n .  / - «  C  K (* )K (e )(a -w )l{|B_#, l< l}( 6 - « t ) l{|fc_ #. l< lJ (a -« c )x
xl{|o-#c|<i}(6- 0c)l{|6_tfC|<1j l(o<„<o)l (Q<o<())d<ui6dctfa(iu.

- ^ A n J  -  ^  (o,4tf« (o - ' ( x ) ) 2 I x ( T ,x ) )  , 
5n,r '  '
.3/2r

and, in consequence

As for — Cn,-v .— — , this term can be bounded as follows,
n . T  f > n  « . /  t A n . r  > 

h n . T  L , =  1 l _ V r  1

^n.r irf^*An,T x\
fc».r K . T  >

=  o I  I An*3
J  en , r L x { T , x )  J  

Then, defining the overall estimation error as 

£  =  fl +  - ----------* « £ _ --------- + -----------C ^ r ----------- +  M l )
^ L s r n  v r XiJ^n,T x \ V r y n  i / y  X,An . r  x  \  V r »  v r XtAn,r x \
hn.T ^*=1 '  /»n,r /ln,T " * =t ' *̂n,r ^n,r -̂<*—1 ' J*n.r

and scaling by y  we have
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/ e n . r l x CT. x )  ( T.U K(.^p)SaMX .̂r) ^  \
V ^  I  f e S t l K ( ^ )  '  <X)j

\£n,TLx{T,x)
An,r

o„
,3/2
V r

+ 0Q A n , r

+ Oa.s. ((An,T)l/2 £)

.3 /2
"n,T

£n’r I j f (r ’x ) /  P V ^ * ( r ,* ) J  +  E .n= i ,

=  Or, I I rO a. ,( l )+ O a .,  f  yJen,TL X (T, x)"j + O p
\/A ntr

: n , r

■y/An,3

l ^n,T^x(T.x)
V A n , r

JV(0,2<r4(.r))

An.T V̂ n r/-/**An.r X\ /ln,r  2 -*=llM ^ ,7. J,

from (7.25), for choices of such that -)"ir- —► 0, J e ny L x (T, x) 0 and h n j  =x/^n.T V
.-2

°(^n,r)- If ~ £n,T^x(T,x) 0 and = 0(£n<x) with hntx/€n,T —♦ <Z> >  0.

then

l e n,T L x ( T ,x )  ( £«"=i K( - ^ - f )gH,r(^An.r) ^  \
V A n , r  I n̂.r K ( X,*n-T~x ) }

V hn,T £->*=! ' C  ' /

- iV (O ,200(x4(z))

from (7.26), where 0# =  2 J^L f(z-i)/$ J(z-i)/4> K(a )K(e)d2c/ade. Finally, provided that 

~/ ^ r  00’ \J^,x {T ,x ) (‘̂ n'^i2---  ^  0 and hn^x =  o(en^x), the An,r term dominates.

leading to

f t x W . x )
3/2n,T O* V r

£n,rLX (T,x)
+ Od

,3/2
n ,r

. \ / Z x ( T , x ) 4

A„,r
Aw.r V̂ ra p-/ X \
^n .r ^->*=1 '  /ln,r I ,

-V ^ 0, 4 9 * (o-'(ar))2)

from (7.27), where =  - 2 / ^  |a -  6|a6 (|l{M<i}) (Jl{|6|<i}) <*<“*  =  0-2666. Under 

the same conditions, but when h ^x  =  0 (£n,r) with h n /r/V r  —»<P > 0 , we have
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1 0 P ( J - ^ r r - )  +    B(1)Xa -  + 0 „ .  ( t A * ) * * - )

A „ , r

.3/2
■n,T

A n.r y> n  ^ n , r  z  \
V t * - t = l V r  '

from (7.28) and (7.22), where

N  ^0,4 (i?0 +  <pV + »fc) (<r'(x))

*« = 5 / “oo / “oo / “oo H o  /«  K(«)K(c)(a-«.)l{|o_#.lslt(6-« .) l{|t_#l|<l>(B-«c)x 
x ^{|a—»0|<I} (^~^c)3{[6—̂e|<i^ r(0<„<o)

^  =  -  f  f°° 2|a -  6|a6K(a)K(6)dad6 
J —oo J  —oc

and

r/0
yOC yOC yO C yOC

= 4<p2 /  /  /  /  u (a ~ ^C) K(u)K(c)l{|a_0c|<1}l(o<6<u) 1(0 <.b4><a)dbdudadc.
J —oc J —oo J —oo J —oo

Notice that rj$ is the constant (for a given <p) of proportionality in the asymptotic covariance 

between

1 (  5(1) \  S*(l)
\  ^ n .r  IS !  '^,An .r 1 \ I &n.T XSI X '&n.T X 'in-T \  hn'T 2-i=l V ) J Z-»=l ( hn T J

and

1 (  A n , r ( l )  i  A * r ( l )

3/2 [ , T  t r / * ' & n . T  x \  I  <ln.r r /v '* ,An,r x \
£n T̂  \  V r  ^ -» = i ( tin .T  >/ 7 ^ f  L . = l K ( — 5 ^ )

The scalar rfo can be obtained as follows. Consider the process

B ' ( r )  =

=  V /2 ^ ^ j ^ u K ( u ) j - ^ ( £ x ( r r , i  +  A„,r u ) - £ r ( rT ,i) )1/U -< w (L )

from (7.20). This quantity is distributed asymptotically [c.f. proof of Lemma 3.5] as a 

martingale, viz.

4 ( S f )  jC  oKW v f c  ( f  "<*.>•**.) * • <™>
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Now consider the process

A;,x (r)

X lAn T - x  A n.re i'r 1{l^ jA n,T - ^ A n,r l<e«.r} [j jT/J ' {<r2{Xa) -  <r2(Xi T/n))ds 
\  K ( ------- ) ' ----------------------- ------- -------------------------------------------------------

y t= l  ^ l'T  1-1 ]= l ■*-{|XJAn.T--^tAn T l<£n,r}

f  o' ( x )\ r°° , N ( \  r °°  , , \ . x 4

\

V *(*> J  J -OC V y \ 2  J - O C  1!— V -  2 ^ _

x(Lx(T,X-rO£n<T) -Lx(T,x))-i-Oa.s{l).

Again, from Lemma 3.5, the asymptotic behavior of this object is driven by the following 

martingale term,

(^F) / l  rfCK(C) ( s / i  d a l{l“- * ^ > )  (Q -  *c) - j =  l(x<X.<x+eB.r«)ff( ^ - ) ^ . )
(7.30)

The covariance process between (7.29) and (7.30) can then be expressed as follows,

“ ' • - “ ’ ( I  l(x<X,<x+hn'Tu)^{x<X,<x+£n,Ta)^^Xs)ds^j dudcfta.

M / 5 J { £ ) )  K(“ )K (c)G/ « ,

x« (a <pc) l(x<a<x+/ini7'u)l(x<j<x+cntj-a)-Lx'(̂ *̂ '»s )ds^ dudcda 

xu(a — <pc) dudcda

xu {a — <pc) ( j C  1(0<6<u) 1(CK x+bhn.T-* 4- bhnT)dbj dudcda
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=  16<t>2 ( a ’(x)^ Lx (rT,x) U (a  ”  ^ C)

x  i f  l(o<6<u) l(o<60<a)^^ dbdcda

Hence,

=  m 2 (cr\x))2Lx {T,x) y '* K ( u ) K ( c ) Q ^ * l {|Q_0c|<l})  x

/OC

1(0<6<u) l(o<b4<a)dbdudcda
■OC

and

/oc roc roc roc
/  /  /  u(a — (pc) K (u)K (c)l{|o_0c|<1}l(o<6<u)l(o<6^<a)d6dudadc.

■OC J  —OO 7 —OC */ —OC

This completes the proof of the various elements of the stated result.

7.9. Proof of Theorem 5.11

As in Theorem 5.5 we start by considering

fcj  g , i  ( < Vr ( * a . . r )  ~
An.r v->n i s t  •y,An .r~ J \ 
hntT ' />n.r '

An.r V»W IV/•̂ lAn.r~I \
/in.j- 2 - t= l  1 An.r *

Arguments like those in Theorem 5.5 enable us to prove that

A n . r  i v / ^ 'A . n . r - 1 ^
A n .r  ^ - < * = 1  '  A „,i- '

= So (* ig r 1(‘W /a- )  (fe r )

/ [ s t K l t ? ) * - * - 0- '  ( ^ ( ^ ) 1/2- e) + 0 -  ( f e f )
_  y.{x)Lx (T,x) +Oq.J.(l) g.a. .

I x ( r , x ) + 0a.a.(i) Mxj'

For (7.31), we just need to verify tha t
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(7.32)
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^n,r(-^«Anir )  — +  °o.s.(l)- (7.33)

To do so, we bound

, TOn.Tb'An.rJ-l r v  V I
1 l^t(»An,r)j+A„,r A t(»An.r)jJ , Y  ,

m n ,r( iV r)  £ o  A"-r  ^

using (7.18) and the Lipschitz property of /z as follows:

rnn.^iAn.r}-! .v  Y •
 1______ [^ { ( iA n . r h -f An . r  '( ‘A n .r l j i  ( Y  \/ * A \ /  . A AH-A-iAn j J
"ln.r(^n,T) ~jJ A\n,r

L m».T<*A«.r)-l rt(iA„.r)J+An.r

mTl,r ( iA Tl,r )A Tl,r  ^  •/«(» A ,.r),
/  (/z(Xs) - M ^ A n.r ))ds

j=0 •At«A..r)J
m».T(«A«.r)-l /.£(iAn.T)J+A„.r

V  /  <r(Xs)d£s
So  •/ ‘(«An,r)Jmn ,r(iATl>7’)An,7’

"Vr(«An.r)-l ^(iAn.rb+An.r
=  0 M.(/cB,r ) +  tt-t-  , A— V  /  <r(Xs)dBs

rnn,r(iA„,r )A „,r -/^.An.rh

where has its usual definition. From the proof of Theorem 5.5, we have

mn.r(^ n.r)-I ^(iAn.rh+An.r /  1
 ---- 77----  ?  /  (T(Xa)dB3 =  0 a.5. . -  -  ------
mn,r(*An,r )An, r  j=Q 7 ^ . , ) ,  ^  ^/enTLx (T ,X tAnS) t

But \Jenj L x { T . X,a„,t ) a-^' oo as a .T  —» oc since we control e ^ r  to ensure that this 

property holds. Hence, the bound vanishes in the limit, giving (7.33), and the stated result 

follows.

7.10. Proof of Theorem 5.12

Write the estimation error as

f e f  £**=1 K ( ~ X _'r ‘ )A V r(*«A n.T)
------------------------------------------------ '■-----y -------------------------------------------- )

An.r v'** ir< *An ,r  x \■ H ^ F L i= iK (-^  T )

An.r v n  r/v •*,An .r- x \ A„,r \~>n
hn.T A -t= l JV,‘ hn.T J ‘'V T  1 '‘n .r  J

term V
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A„.r ^ n  r^^,̂ lAn.T~I \ An.r 1V/'^lAn.T~I \
hn,T '  hn,T '  ^n.T '  /*n,T '

term B

=  term V  +  term B.

Consider term V  first, viz.

t g  S . ,  £ *  £?-
An.r r r /^^n .r"1-, ^u.r v^n t s i*'*n,T~x \
^n,r "*=l  ̂ Sn!r ' fcn.r "*= l  ̂ K^r '

a . .  ) ( < V r ( ^ A . . r ) -  r t X ^ r ) )

&n,T T/y *̂ «̂ n.7'~I \
n̂.T 2-«*=l ' hn.r '

The numerator can be written as

J ) Gv H * 4 . .t) - / « 4 . . r ) )

A n ,r  A  . . .  -T,An.r  -  X E j= l  1UX}&n T-X,An Tl<en.r}T [(X {j+l)T/n ~ XjT/n) ~ V(X xT/n)&ns]
L /  „ V L / r ^ n 1

"n,T 2 - ja=l l{ |X jAntT-X lAntr|<e..T}

Notice that
r ( j + l ) T / n  r ( j + l ) T / n

X (j+l)T/n ~  X jT/n  = /  fl(Xa)ds + / a(Xa)dBa.
JjT/n JjT/n

Hence,

V r  /ln-r

x E " = / 1 {|XjAn r -X lAn r |<£n>r} f  [(* (j+ l)77n  -  XjT/n) ~  K X iT/n)^n,T]

Hj=l  r l<en.r>

^ h I y 'K ( ^ % 2 — f )  x 
V r  «n,r

g g  f e 11™  (M *.) -  l « i y . ) )  d* t g ” " W

—j—* u-M«n,x **̂1,4 * ^

  4 i )r O y , -^tAn,r ~  ^ . ^ j = l  {̂l-XjAn,r ~- îAn r l<gn,r} T [ijT/n

V r f e  K t  E ”= ii{ |x jAn>r- . ^ .

£<J=1 {̂|-̂ iAn X--’ftAB,Tl<«n.r}

, ^ w1)r/n ( t iX a) - n ( X iT/n))ds

<«n.r}

(A^r)
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) ~  1{ \ X j A n ,T - X . A n ,T \ < e n . T } T  [ f j T / n *  1 ^ { X , ) d B tn , T  V " ' p r /■ -^ A n .T  X ^ Z j—I 1 { l^ JAn,T -^^T t.rl—£n.r]

%t  jr{ K t  E i= iV r  “  V t  E j = l  1 {|XJAn,T -A-lAn,T l<en.T}

'  (Bn.rU)) "

First examine viz.

V ^ ' i - n r )  =  J —  2 ^  K( )--------------- a „ . T v n  ----------------------------------------
^  i= l ^  2 ^ Z .J = 1  l{|X JAn,r -A-,An.Tl<e-n.r}

The martingale B„i7’(r) has quadratic variation which can be analysed as in the proof of 

Theorem 5.6 as follows:

H v ^ r )  5 2 j= l  1 d JfjAn,r --y«An,r l<gn.r>1 {lXJAn.r -^fcAn,r l<£n.r} [ j j T / J  '  ° ,2( ^ ) d8] 

( 2£n,T 5 Z j= l ^•{l-^jAn r -A',An .r l<«n.r } )  ( 2en.T 5Z j= l ■*’{l-?fjAn,r -^fcAn_r l<en.r})

(  1 \ 2 f [ r r i J  f {Trl J  T , , X » - x w t X u - x ^  .=  f c j  Jo dSJo duK{-K F )K{~KF)X
1 *pte~fJo £ /6 l{|Xll- X . |< c „ ,r l1{|X(>-X u|<en.r }0’2( ^ 6 + 0 a . i . ( l ) )

X  7~ \  7r ----------------------- T T " ! -------T ---------------------------\ -------+ ° a .3( l )
\2 e Z r  JO l{l&-*l<en. r } ^ J  ( 2e^T  fo  J-(lb-ul<en,T } ^ )

I  y  ,a c  r + a c d s d u K { s - x ) K { u - x ) x

« n ,r /  J-oaJ-oo  ««,T fin,r

f r ) r ( r r ,- ) r ( r r ,«) t t n
7— :-----------------------—----------r—r--------------------------—----------—asduab
( s b  r »  » )* ) ( s t  % » )
o - .f lh+Oa.a(l)

Let

s — 1 u — x
— = a and — =  e.
«n,T dn,T

Then,

[OO

/ do
J —OO

/ ”  d6l{|6- I -q/ln7.|<e-riT}l{|fa- z- e/lTir|<£n:r}L x (r,b)Lx{rT,x  +  a h n r fL x jrT ,!  +  e / y r )

( 2̂ ?  H o  Iflft-x-aAn.rl^n.rl-^xCT^jdi) i^oo ^{l*-*-eAn.rl<«n.r}^iJf(^,’^)<®)
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L  ■deK(a)K(e) x
f —OC
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+ ° o . a ( l )  
r o c  r + o o/oc r-hoo

da / deK(a)K(e) x
-OO J —oo
1 7 7 7  6- .  t - x  _ »n .T^u L x ( T , b ) L x ( r T , x  +  ahn 'T ) L x ( r T , x  +  e ^ r )

V l« n , r  cn , T  en ,T  * n ,T

\ t r  Z » f  s i ?  r .
 ̂ l l*n,T *n.r J /  \  ll*n,r en ,T  J /

+ ° a . j ( l )

Setting

b — x
= 2 ,~n,T

this last expression becomes

/oo r+ o c
da / deK(a)K(e) x

■oo J—oo
4 f-oo d2 l{u -a! ^ l<n1ih_e^ l<lieT2(x ^ x ( T Jx  + z£n<T)Lx (rT,x + ahn,T)Lx(rT ,x  + e ^ r )
___________1 *n.r * "  «n.T ’_____________________________________________________________

^ 3 / ^ 0 V - a ^ f  |< n I x ( 7 V x  +  z e n , T ) ( k J  1{ l t _ e ^ L l^ x ( T , x - h z £ a . r ) d z ' j

+°a.a( 1)-

Now, if kn,r = o(£n,r), then

rt> , a.s. 1 21 \ (Lx{rT ,x))1
^  -  r  (l)-rrp>T'

whereas if h n j  =  0{£n<T) with V r / ^ n . r  -*■ 0 >  0, then

rD  ] o .a . l fl 2 f \ ( ^ x { r T , x ) )

where =  3 f(z-i)/$ K(a)K(e)dzdade again. Using standard arguments, as

in Theorem 5.6, this implies that

r—  I B n,r(l)
\ W  I 7 ", __ j rfln .r V^n TSt A“ n,T * \ , 7^f L . = i K( — )

and

i  MJV f0
V 2 L x ( T , x ) J

( A..P ^  *  ( “’ ^ (I))* * n ,T  V>»* , a n . T  *  \
V r ^ < = l ^  /»n.T K
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provided =  o(en,T). If h^T =  0 (e„ ,r) and h ^ j / e n j  —■ <t> > 0, then 

Next examine A n,r. We have

A n>T

= ^ n’T V  K( ̂ iAn-r ~  J ) ^ =l11{!-Ŷ n.r~-Ŷ n.rl^-»-r}T [ / j r V  1 (/*(*») ~ M ^ir/n ))  <*«] 
V r  V r  E"=l 1{|XJABir-XiAni7.|<£n.T}

-  A n.r ^lAn.r ~  x ^ j =  l 1{ l ^ n,T~X^n.T^£"-'r} T [jjT/J / (vi-Xa) -  KXjT/n)) da

I An’r  Y " K f  X *An-7' ~  ^  (rtXiT/n) ~ PiXiTIn))
/l /)_ rp Afl.r \  ’Tl 4

’ «=1 ’ 2e„,r {l^jAt,,T-^ .A n,r l<«n,Ti

| A n.r V"* — x  2sn,r ^3j=l {̂l-yjAB-T--y.A„-Tlg£«.rt^ (xjj) (XjT/n ~  ^iT/n)

where xtj f  (XjT/m-XiT/n) ^  ["^jT/m ■̂CiT’/n]- Then,

A n,r
1 /•r J ^ ,X J - x 15rf7/o7'<i<‘l(|X„-x.|<e„.r ^ ' ( / ( ^ , X s) ) (X „ -X ,)

= x— / rfsK(-z — )------------------ 1— 7T.;------------------ :------------------ -t-oa.*(i)
h n ,r 7 o  V r  2 ^ f o  1 { \ X u - X , l < e n . T } d u

 L  r  - X , g h n . * 11!!— I S ^ r K * ' ( / ( “ • » ) ) ( "  - « ) T  7
, / a5K( ) j -oo i y  /JTr \ i u)Lx{T, 5)
V r  . / - o c  V r  J - 0 0  1{ |u -a |< C n ,r} -£' ^ ( r ’ u ) rfu

+0a.,( l) .

Let
s — x  u — x
— =  c a n d  =  a.
h n , r  £ n , r

Then

r z ^£ n ,T
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1 r °  , f-oo d u l{l«-T-chn,Tl<en,T}f1' ( /(u’X +  CV t ) )  (u -  X -  dln,T)
= ------ I acK(c)— :---------------- j— T55----------------------- — - ——-----------------

£ n , T  7 - o o  2 e n  T  J -o o  ^ { \ ^ - x - c h n , T l < £ n , T } ^ ‘ x ^ , U f€n,T J~oo
x £ *  (T1, u)Lx (T , x  +  chn^r)

| / ^ o d a l{|a_c n̂1r |< 1/  ( /(*  +  ̂ r , a r  +  c V r ) ) ( a - c ^ )/•oo 2
= /  dcK(c) " ‘n-T

I— oo i  S Z  1 „ .  “H k ,  , i x ( X , x  +  <K„,T )<to

x l x ( r , x  +  a e n,T ) L x (T,  x  -t- c /in ,r)  +  Oa.s(l)

1 dal h „  T a  (x) f a  —2 J-oo ru_c^ | < 1i^  v*;  ̂ £n,T ;
* «  T  */ OO tn.T )  _  __

d c K ( c ) ----------------------= ^ ^ n -r - ------------------ — -------------------- ( I * ( X \ x  +  a £ n . r )  -  I j c ( r , x ) )  L x (T, x)
•oo ix ( r ,x )  tO w .(1)

+oa-J(l).
Hence, if hnj< = o(-n,r)

where =  -2  J^  |a -  6|a6 (jl{|«|<i>) (^1{|6|<i>) dadb =  0.2666. Also.

f  V r  ^ i  v  7 ,  ,
Analogously, if hn,T = 0(£«,r) with hnj ’/enj '  -* <P > 0, then

( . ---------------------- —  \  A j /  t o ’

where

^  = 5 7- 0= J " .  f-oo /-«  C  K(S)K(c)(a-«S)l(|a_w|<1>(6-<M)l{|t_w|<l}(a-.Sc)x

Now, we analyze term 5 . From previous results it is easy to prove that

A3/2 («)
‘n,r

< r  I f e F E i . K t * ^ )

7 &x(T,i) /  Efal K( ) (i i{Xj^ T) -  fi(i))

iv|o,v> tri<*) J
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where ip =  — 2|a — b\abK(a)K(b)dadb. In consequence, defining the estimation

error as

An.T V>n ^ ‘An.T 1 \ r->n xs t X'&n.T ^ \
» , r  '  A n . r  '  ^ n . r  ^ -< * = 1  '  h n ,T  '

we can write

. —i .

/— f  3  i A.,r ) ;

=  Je„,TLx (T,x)(Or {  *"•r  I
\ J l x (.T,x )J

A n , r  r \
2wi=l v r  1

3/2

v' l x (T ,x )/ ' V v 'lx t r .x ) / ^n.r
+Oa.s.(A n,r) l/2- 5)

= Op (^n,r/ln (r) +  °P (£n ,r) + \Jen,T^x(T ,x) (  — Bw,r^ ^  _x'  '  y l ^w.r tv-/ *^n.r \
\  ^n,T A^*=l '  /in.r >

+0,.*. (A„,r)1/2-5 ( I x ^ x ) ) 172

if hn,T =  o(e„,r)- If V r  =  O(^n.r) with hn T̂/en T — <p > 0 , then

/ -  V ■„  T, f f e f  S Z .  . , ’

i  AT ( o . ^ . ^ x ) '

where 00 =  5 J ^ - x y t  i{z-\)/4> K(o)K(e)dxdade. This proves the stated result.
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8. N otation

almost sure convergence
convergence in probability-

¥d weak convergence
:= definitional equality
Op(l) tends to zero in probability
Op(l) bounded in probability
Oa.s.(l) tends to zero almost surely
^a.3.(l) bounded almost surely
=d distributional equivalence
~d asymptotically distributed as
MN (0, V) mixed normal distribution witli variance V
u indicator function for the set A
a V 6 max {a, 6}
Ck, k = 1, 2,... constants
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Part II

Short-Term Interest Rate Dynamics: a 
Spatial Approach
9. Introduction

A large body of recent literature has been devoted to the estimation of the short-term 

interest rate process. There are several reasons to take an interest in this issue. First, it is 

particularly relevant given the role of the short-term interest rate as a key economic variable 

linking real and monetary phenomena. Second, interest rate model specification (often in 

continuous-time) has implications for the pricing of fixed-income securities and derivatives. 

Finally, interest rate levels constitute a traditional benchmark to evaluate asset pricing, due 

to the fact that expected equilibrium returns are defined in terms of excess returns relative 

to the risk free rate.

In continuous-time finance, the dynamics of the spot interest rate process is usually 

modelled as a Markov stochastic differential equation. Stochastic differential equations are 

completely described by two functions, the drift and the diffusion function. Parametric 

approaches to the estimation of these two functions have yielded contradictory results. Al't- 

Sahalia (1996b), for example, suggests a semiparametric procedure to discriminate among 

alternative parametric specifications. He rejects every conventional one-factor model of 

the short rate but some recent evidence shows that his procedure has distorted size and 

low power in finite samples [Pritsker (1998)]. Fully nonparametric methods have been 

developed but they either rely on the existence of a time-invariant marginal density for 

the underlying process [Jiang and Knight (1997a), Jiang (1998)] or stationarity is assumed 

despite robustness to deviations from it [Stanton (1997)].

In this chapter, we implement a unified approach to the estimation of the drift and the 

diffusion function of the short-term interest rate process based on the estimation procedure 

proposed in Part I. As discussed earlier, we use functional methods. Minimal requirements 

are placed on the data generating mechanism allowing for both stationary and nonstationary 

systems. Cross-restrictions on the functional forms of the drift and diffusion function [as 

in Al't-Sahalia (1996a,b), Jiang and Knight (1997a), Jiang (1998)] are not imposed, nor is 

the existence of a time-invariant marginal data density either required or assumed [Stanton

(1997)]. In consequence, the approach is robust against deviations from stationarity. The
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available data is taken to be a set of discrete sample observations. Econometric estimation 

proceeds by constructing refined sample analogues of unknown drift and diffusion functions.

The proposed methodology has several important features. First, as mentioned ear­

lier, despite a flurry of theoretical contributions [c.f. Duffle (1992), for example], empirical 

results do not offer complete support for any specific parametrization. Given the impor­

tance of the short-term riskless rate in valuing and hedging a broad array of fixed-income 

contingent claims, fully nonparametric methods are particularly suitable to avoid potential 

misspecifications.

Second, even though the drift is theoretically harder to identify than the diffusion term 

[c.f. Al't-Sahalia (1996a) and Jiang and Knight (1997a) inter alia, and Part I], a unified and 

complete asymptotic theory for both estimated functions is crucial in fixed-income pricing. 

In effect, the drift of the underlying short rate process plays a role in assessing the value 

of fixed-income securities even under the no-arbitrage restrictions imposed by martingale 

pricing [c.f. Ingersoll (1987)].

Third, the evidence on the stationarity of the short rate process is quite ambiguous. 

Preliminary unit root tests either accept the null of nonstationarity or deliver results very 

close to the rejection threshold. This observation explains why high-frequency spot interest 

rate series are often modelled as nonstationary processes in macroeconomics [c.f. Al't- 

Sahalia (1996b)]. In continuous-time empirical finance, stationarity is generally assumed 

upfront to assist in developing a complete estimation theory. Some researchers have provided 

plausible ex-post justifications for this assumption based on estimated drift and diffusion 

functions. Al't-Sahalia (1996b) suggests that the spot rate can be locally nonstationary 

over the range of the process corresponding to a drift very close to zero. Nevertheless, a 

nonlinear mean-reverting drift at the edges of the range of the process can be sufficient to 

pull the series back into its middle region and determine global stationarity. Conley, Hansen, 

Luttmer and Scheinkman (1997) [CHLS, hereafter] suggest volatility-induced stationarity. 

Mean reversion at high rates can be small but increasing volatility is sufficient to import 

stationarity into the series.

Due to the mixed a-priori empirical evidence, estimation methods relying on stationarity 

can yield imprecise inference and suggest misleading conclusions. In consequence, we do 

not make the assumption of stationarity in this work.

We are interested in estimating the drift and the diffusion function at each point in the 

range of the sample interest rate process, so the density of the observations there plays a
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role in the operation of the asymptotics. This information is contained in the estimated 

local time of the spot rate process [c.f. Part I], We review the definition of local time here, 

and some useful observations related to this crucial concept [classical references are Revuz 

and Yor (1994), Karatzas and Shreve (1988), Chung and Williams (1990)[.

9.1 Definition If Xt is a continuous semimartingale (SMG), then there exists a nonde­

creasing stochastic process (nondecreasing in t, that is) Lx(t,a), called the local time of X  

at a. This process is defined, almost surely, as

Lx (t,a) =  lim - [  l [ata+£[(Xs)d[X]a. (9.1)
£-*u e j o

Lx{t,a) represents the amount of time that the process X  spends in the vicinity of 

the point a. It is measured in units of the quadratic variation process ([X]*). These are 

information units as they represent the amount of information that is being accumulated 

about the process. Consider, for simplicity, a Brownian motion Bt with variance a2. Lx(t, a) 

reduces to

1 I1L B{t,a) =  lim — J  I(\B. - a\<e)(r2ds. (9.2)

In this case we have integration with respect to the Lebesgue measure since the quadratic 

variation of Brownian motion is deterministic. If we now divide through by er2, we obtain

-  1 1L B{t,a) =  - f L B(t,a) = fim— j  l(\B, - a\<e)ds. (9.3)

LB(t,a) can be called “chronological local time” [this notion was first introduced by Phillips 

and Park (1997)). This formulation gives an interpretation of the local time in terms of 

amount of time, in real time units now, spent by the process in the spatial neighborhood 

of a point. Also, this definition shows the sense in which the local time, even though 

random in nature, is analogous to a probability density. In fact, it provides meaningful 

quantitative information about the locational features of the process, in just the same way 

as a probability density distribution can be used to characterize stationary time series.

Since the solution to a stochastic differential equation is a SMG, we can define the local 

time process of the short-term interest rate series in the usual fashion. Below, we interpret 

the local time process as a series of spatial densities, along lines pioneered in Phillips (1998).
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Also, we show how to consistently estimate spatial densities using nonparametric density­

like kernel estimators [c.f. Part I]. Our inference is based on a complete asymptotic theory 

for spatial densities of diffusion processes. The diffusion processes that we consider are 

potentially nonstationary solutions to possibly nonlinear stochastic differential equations.

The notion of spatial density assumes importance particularly when the underlying 

process is nonstationary as it furnishes the possibility of characterizing some of the features 

of the data, i.e. those related to the location of the process. In effect, in the presence of 

nonstationarity, conventional descriptive statistics fail to provide reliable information given 

the tendency of the data to drift away from a particular point. Spatial densities can then be 

regarded as a new descriptive tool for series that are nonstationary or whose stationarity can 

not be guaranteed [these observations were first made by Peter Phillips during the Irving 

Fisher Conference at Yale University, May 1998].

Based on estimated spatial densities, we discuss some of the features of the specific data 

set at hand. We study the annualized 7-day Eurodollar rate [June 1, 1973 - February 25, 

1995]. This data was previously used in Al't-Sahalia (1996a,b).

Further, we define functionals of spatial densities, such as spatial hazard rates [c.f. 

Phillips (1998)]. Spatial hazard rates can be interpreted as spatial analogues to traditional 

hazard rates obtained from time-invariant marginal distributions. Again, a complete as­

ymptotic theory for nonparametric estimates of spatial hazard rates assists our inference.

Finally, we carefully discuss the sense in which the information embodied in the spatial 

density of the interest rate process can be used to implement a flexible and rigorous approach 

to the nonparametric estimation of the two functions driving the interest rate dynamics in 

continuous-time, viz. the drift and the diffusion function.

As in many recent papers [Al't-Sahalia (1996a,b), Stanton (1997), Jiang (1998), for 

example], the main source of the rejection of traditional linear mean-reverting structures 

in the constant elasticity of variance class is the specification of the drift function. Our 

estimated drift is virtually zero up to about 15 percent. It mean-reverts in a nonlinear 

fashion only at the upper edge of the range of the sample process. Contrary to the existing 

literature, we emphasize the importance of the martingale behavior of the spot rate series 

over most of its range in disputing linear mean-reverting models. As for the marked non- 

linearity of the drift at the upper edge of the sample process, its empirical relevance is 

clouded by the availability of few observations in this range. This idea can be phrased 

in a more rigorous fashion in our framework. We will show that in order to be able to
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draw precise inference on the drift of the process at a point, we require the estimated local 

time of the process at that point to be large. In other words, we require the time spent 

by the sample process in the spatial vicinity of that point to be large. Since the sample 

process barely visits interest rate levels at the upper edge of the empirical range, we cannot 

draw firm conclusions about the behavior of the drift at high interest rate levels, where 

nonlinearities arise. Even though rarely mentioned, the problem of the lack of sufficient 

observations at high rates affects most recent papers. We believe this issue should suggest 

a more cautious interpretation of the economic content of the estimated nonlinearities in 

the literature.

This chapter is organized as follows. Section 10 introduces the model and outlines 

existing parametric and nonparametric approaches to the problem. Section 11 reviews the 

estimation technique presented in the previous chapter, introduces new results and discusses 

the sense in which “spatial” arguments can be used to assist in developing a general approach 

to the functional analysis of the dynamics of the short-term interest rate process. In Section 

12 we present the data and implement the method. Section 13 concludes. Technical details 

and proofs are provided in Section 14. Notation is laid out in section 15.

10. Conventional parametric specifications and estim ation procedures

In one-factor term structure models, the spot interest rate is the only state variable on 

which the current yield curve depends. Its dynamic is usually modelled as a stochastic 

differential equation of the form

drt = t)dt ■+• er(rt, t)dBt (10.1)

where /*(.,.) : JK x [0,T] —*■ . rr(.,.) : x [0,!T] —► 9l+ and {£*,0 < t < T )  is a standard

Brownian motion. The functions fi( .,.) and <r(.,.) are specified to guarantee the existence 

of a solution to (10.1) such that for all t the price 'Ptj’ = 3fmm[exp(/tr ( - r i )ds)] of the 

zero-coupon bond with maturity T is well defined [see Duffie (1992) for a discussion]. Qfmm 

represents the expectation with respect to the equivalent martingale measure. In particular, 

^ t,T =  ^ fmm[exp(J]r ( - r a)ds)] =  4>(rt ,£ ,r)  for some function $  : [0,T] x [0,T] x 91 —► IK. 

This implies that at each time t the term structure depends solely on the contemporaneous 

value of the short-term rate, on t  and on the time to maturity T. Consider the following 

specification:
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/z(r£,t) =  ao(t) + ai(t)rt + a 2(t)r? + a3{t)/rt + aA(t)rt \ogrt, (10.2)

=  f t( t)+ 0 i(* )r t+ & (f)r? ,W (10.3)

where q0(.), c*i(.), q2(.), a 3(.), a 4(.), #)(.), /3a(.), &(.) and /%(•) are continuous on [0 ,T] 

into iH. Formulae (10.2) and (10.3) encompass most models in the literature. Provided 

formulae (10.2) and (10.3) do not depend on time, the solution to (10.1) is a homogeneous 

Markov process. We can write the unrestricted homogeneous specification in the form

drt =  (ao +  o:irt -i-a2rf + a 3/ r £ + a 4 r £ log r £)dt

+ (\j$o +  $irt +  farf* )dBt . (10.4)

Various restrictions on the parameters generate common single factor models.1 For example.

Q2)Q3, a 4, /Jo, Si =  0 and A  =  1 [Cox- Ingersoll-Roas (1985)], 

a 2,a 3, a 4,/3i ,#2  =  0 [ Vosicek (1977)],

a 2, a 3,a 4,^ i = 0 and J3 = 1 [Pearson and Sun (1994)],

Q2,a 3,Q4l/3o,A =  0 and Sz =  2 [Brennan-Schwartz (1979)],

a 2,Q3, a 4, fjo,fi1 =  0 [CEV diffusion-Chan et al. (1992)], 

ai,Q 2,a 3, a 4)/5 i,/i 2 =  0 [Merton (1973)],

=  0 and Sz =  2 [Dothan (1978)], 

a o ,a i ,a 2,a 3, a 4,$),/Ji =  0 and $3 =  3 [Constantinides-Ingersoll(1984)], 

a4 =  0 [Ait-Sahalia (1996b)],

Qo,a2,Q3,/3o,/3i =  0 and (h = 2 [Homogeneous Black-Karasinshi (1991)],

Qo,a2,a 3, a 4,/3o, i?x =  0 [Cox and Ross (1976) /  Cox (1985)].

The Vasicek model, the Cox-Ingersoll-Ross (CIR, hereafter) model, the Merton model and 

the more general Pearson and Sun model belong to the so-called "affine-class” of term- 

structure models. They share the property that log bond prices, and hence bond yields, are 

affine in the underlying state variable, namely log $ (r£, t, T) =  log $ (rt,T —t) =  A{T—t)rt +

lThe following table summarizes standard approaches but does not, by any means, aim at being exhaus­
tive given the magnitude of the theoretical literature on this topic.
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B (T  — t)2 where A  and B  are continuously differentiable functions. They have a number of 

appealing features: their linearity allows a parsimonious representation of the term structure 

at each point in time, as a function of the system’s state variable. Moreover, the model 

can be renormalized so that the yields themselves are the state variable. This observation 

is clear in one-factor models, but it is also true in set-ups with any number of unobservable 

factors. Longstaff and Schwartz (1992), for example, solve for the dynamics of the level of 

the short rate and the volatility of the short rate but the model can be also defined in terms 

of two bond yields of fixed maturities. In general, affine models permit closed-form solutions 

but impose strong restrictions on the term structure [e.g. see discussion in Campbell, Lo 

and MacKinlay (1997)].

The behavior of the spot interest rate implied by affine models is quite different. The 

Vasicek model specifies the short-term rate as a standard Ornstein-Uhlenbeck process. Pro­

vided qi < 0 (i.e. mean-reversion occurs), it is strictly stationary in the steady state. Since 

linearity3 holds, the process inherits the properties of the underlying Brownian motion, i.e. 

both the transition and the marginal density are normal. The CIR squared root model dis­

plays a noncentral chi-square transition distribution. If Q; < 0 and 2ao > A , the process is 

strictly stationary in the steady state with a gamma marginal [Feller (1951)]. The model in 

Merton (1973) is a standard Brownian motion with drift. The transition density function 

is normal and the process is nonstationary [see Part III for a thorough description of the 

statistical properties of these specifications].

The Merton model could be generalized to a specification with time-varying coefficients 

that is often called the Ho-Lee model (1986). The Ho-Lee model looks at movements in the 

yield curve consistent with the absence of arbitrage opportunities. The focus here is on the 

fitting, at a given time, of the underlying term structure, rather than on the description 

of the time series properties of the process driving it. This observation motivates time- 

dependent specifications in “arbitrage-free” models [see, also, Hull and White (1990)].

We will assume a time-invariant structure in what follows. Hence, we can rewrite (10.1)

as,

drt =  K rt)dt +  <r{n)dBt (10.5)

*Duffie and Kan (1993) and Brown and Schaefer (1991) give conditions on the spot rate dynamics which 
deliver an affine structure in continuous-time. Technicalities aside, they show that the drift and diffusion 
term have to be affine, too.

3 In the usual sense for stochastic differential equations.

57

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

where the functions ^(.) : 91 —»SR and er(.) : 91 —> 9l+ satisfy the following expressions

M n) =  lim £ {r t+ /t- r t lrt = r } =  (10.6)
h—*0 ft

=  lini l  /  (n+ h-nJrfP C n+ fclnsr),
h  J[\rt+k- r t \<£\

o-2(rt) =  lim E{ ^  |rt =  r} =  (10.7)/i—*0 rl

and, also

=  Urn i  A
h-o /i ; f!i (rt+fc -  rt)<idP(rt+h|rt =  r)

[!rt-rfc-n|<rj

lim h lP(\rt+h -  re| > e\n =  r) =  0.
rl—»Q

We know that (10.6) and (10.7) represent the ’Instantaneous” conditional mean and the 

“instantaneous” conditional variance of the process when rt =  r. Specifically, (10.6) de­

scribes the conditional expected rate of change of the process for infinitesimal time changes, 

whereas (10.7) gives the conditional rate of change of volatility at r  [see Part I, Section 2, 

Assumption 2.1, for conditions which guarantee the existence and uniqueness of a strong 

solution to (10.5)1.

A further observation on the model is needed. We are working in a Markovian world. 

Some recent evidence [for example, Jeffrey (1997) and Al't-Sahalia (1998)] suggests that 

more degrees of freedom should be allowed for a better understanding of some financial 

time series, including interest rates. We believe that a more complete assessment of the 

empirical potential of path-dependent specifications is needed4 before we dism iss models 

whose main virtues are simplicity and tractability.

We now turn to a concise review of the econometrics of stochastic differential equations.

1 As mentioned earlier, it is hard to conclude that conventional short-term interest rate series are stationary 
on the basis of traditional unit root tests. The test of “Markovian nature” in Al't-Sahalia (1998) hinges 
theoretically on the stationarity of the series under analysis. It is based on the Chapman-Kolmogorov 
equation for Markov processes and consists of comparing a direct estimator of the 2A-interval conditional 
density to an indirect estimator obtained by iterating a direct A-interval estimator of the conditional density 
of the process. TVansition densities are computed very naturally as ratios of joint and marginal distributions. 
Strict stationarity is necessary to evaluate the time-invariant marginal distribution of the process. The 
inspection of path dependent specifications in Jeffrey (1997) is thorough but, again, the asymptotic results 
supporting his GMM application rely on the stationarity of the underlying process.
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10.1. A brief discussion of some relevant estimation methods in a continuous- 
time framework5

Nonparametric drift and diffusion functions have been proposed by Banon (1978), Geman 

(1979), Pham Dinh (1981), and Banon and Nguyen (1981) but they all assume continuous 

sampling observations. The first paper to deal with the nonparametric estimation of the 

diffusion term from a discrete record of observations is Florens-Zmirou (1993). She leaves 

the drift term unidentified and treats it as a nuisance parameter. The diffusion function is 

estimated by employing a sample analog estimator [compare to (10.7)] defined as follows,

~ 2 / x 1 l{|*i/B-x|<M[*{i+i)An - X «a„]2
* (» )(* )  =  a ---------------------------- ,------------------------------------- • (10.8)

We assume that we observe X t at [t =  t !, £2, ••, tn} in the time interval [0,T], with T  > 

Tq > 0, where Tq is a positive constant. We also assume equispaced data. So, {Xt =

XAn,X 2&n,X 3An,...,XnAn} are n observations at {tr =  An,f2 =  2An,f3 =  3A„ tn =

nAn}, where An = T fn . Asymptotic results are obtained as the sample frequency increases 

for a given ending time T. Under fairly regular conditions on the sample size (n) and the 

bandwidth (/in), namely as n —* oo, hn —* 0, nhn —* oo and nhz —> 0, Florens-Smirou proves 

the £ 2-consistency of dfn)(x) and convergence to a mixture of normal law, depending on 

the local time of the process [c.f. Theorem 5.9 in Part I].

The work by Jiang and Knight (1997a) relies heavily on the results in Florens-Zmirou 

(1993). Their diffusion function estimator is the same as the one suggested by Florens- 

Zmirou (1993), but is constructed from a general kernel function rather than from a dis­

continuous indicator function. Their drift estimator combines the estimator of the diffusion 

function along with the estimated nonparametric density of the underlying process under 

the assumption of stationarity. In effect, it is a well known result that, provided suitable 

regularity conditions are met, the marginal distribution of the process is fully characterized 

by the two functions of interest, i.e. the drift and the diffusion function [e.g. Karatzas and 

Shreve (1988), Karlin and Taylor (1981)]. More specifically, we can write

rt*) =  \ (10.9)

It is a simple task, by Slutsky’s theorem, to define a consistent estimator for the ‘instanta­

neous” conditional mean given consistent estimates for the density, p(x), the diffusion term,

5 Again, due to the magnitude of the literature on the topic, the following discussion does not aim to be 
exhaustive.
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&2(x), and their first derivatives, and respectively.

The same approach, though reversed, was previously utilized in the semiparametric 

estimation procedure proposed by Al't-Sahalia (1996a). He specifies a parametric, linear 

mean-reverting drift. Subsequently, given the theoretical cross-restriction on the diffusion 

based on the marginal density of a strongly stationary process and its drift function, he 

proves pointwise consistency and asymptotic normality for the semiparametric diffusion 

estimator constructed from the nonparametric estimate of the density and the parametric 

estimate of the drift. A similar semiparametric approach based on density-matching is 

contained in Al't-Sahalia (1996b). In a recent paper, Stanton (1997) suggests the use of 

nonparametric approximations to the true functions. This is the first work which attempts 

fully nonparametric identification of diffusions by use of discrete data without resorting to 

cross-restrictions as in (10.9).

Many authors have used parametric approaches to diffusion modeling, often employing 

maximum likelihood (ML) methods. Brown and Hewitt (1975), Lanska (1979) and Ku- 

toyants (1984) are among those who assume continuous sampling observations. Dacunha- 

Castelle and Florens-Zmirou (1986) is the first paper concerned with the parametric estima­

tion of nonlinear diffusions from a discrete record of data. Donhal (1987) proves the local 

asymptotic mixed normality property of the likelihood function of the diffusion term. Both 

papers use the expansion of the transition density of the underlying process for small changes 

in time. Lo (1988) discusses how to perform ML estimation of jump-diffusion processes. 

Pedersen (1995) proposes an approximate ML estimation procedure for multidimensional 

diffusion processes. In a recent paper, Al't-Sahalia (1998) illustrates the properties of con­

sistency, normality and asymptotic efficiency for ML estimators obtained from maximizing 

a sequence of approximations to the true, but unknown, likelihood function of the discretely 

sampled process.

Generalized method of moments is employed in many papers often based on discretiza­

tions of the underlying process [Chan, Karolyi, Longstaff and Sanders (1992), CKLS here­

after, for example]. Hansen and Scheinkman (1995) rigorously derive moment conditions 

for continuous diffusions based on the infinitesimal generator and a stationarity assumption. 

Also promising are the simulation methods based on indirect inference [notably, Gourier- 

oux, Monfort and Renault (1993) and Gallant and Tauchen (1996)]. This line of research 

is very close to the simulated moments procedure suggested in Duffie and Singleton (1993).
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10.2. The issue

Modern asset pricing theory relies on continuous-time models, typically formulated in terms 

of stochastic differential equations, for the dynamics of the underlying state variables.6 

This mainstream approach motivates the design of appropriate estimation techniques in 

the same framework. Furthermore, the necessity of being as general as possible justifies 

the implementation of functional estimation methods capable of taking into account the 

discrete nature of the available data. As pointed out earlier, a wide array of contributions 

has been provided along these lines. The problem with conventional approaches is that they 

rely heavily on the stationarity of the process. The reason for this is that the assumption 

of stationarity allows the possibility of consistently estimating the marginal density of the 

series and, based on this, carrying out sophisticated estimation procedures [see, for example, 

Al't-Sahalia (1996 a,b) for semiparametric applications and Jiang and Knight (1997a) and 

Jiang (1998) for a fully nonparametric approach].7

Nevertheless, even though it is not an implausible theoretical assumption, the station­

arity of short-term interest rate series can not be empirically guaranteed6. Therefore, more 

robust estimation methods are needed. A possible solution is to achieve identification of the 

functions of interest without resorting to cross-restrictions based on the marginal density 

of the process. In other words, it is important to estimate consistently both the drift and 

the diffusion function in situations where one of these is of primary concern and the other 

function is treated as a nuisance parameter.

Valuable, in this context, is the work by Stanton (1997) [see, also, Boudoukh, Richard­

son, Stanton and Whitelaw (1998) for a bivariate application]. His procedure is based on 

approximations to the true drift and diffusion obtained through the use of the infinitesimal 

generator [Revuz and Yor (1994) is a classical reference]. The econometric estimation hinges 

on the use of functional sample analogs. In the original paper, Stanton’s methodology is

6For an overview, see Duffie (1992).
Stationarity is also usually invoked in parametric studies. Inter alia, CKLS (1992) carry out a GMM 

procedure whose asymptotic theory is based on a (non-tested) assumption of stationarity and ergodicity for 
the underlying series. To generate moment conditions for continuous-time Markov processes, Hansen and 
Scheinkman (1995) utilize the Dynkin operator and impose the condition that the time derivative of the 
unconditional expectation of some ‘well behaved’ functions of the underlying process is equal to zero. Again, 
this comes from assuming the strict stationarity of the underlying process.

*In Al't-Sahalia (1996a,b), for example, the spot rate used is the seven-day Eurodollar deposit rate, bid- 
ask midpoint, from Bank of America. The data are daily from June 1, 1973 to February 25, 1995. The 
author rejects the null of nonstationarity at 90 percent using a standard Dickey-Fuller test (the value of the 
test statistic is -2.60 versus a critical value of -2.57). The robustness of this result can be disputed after a 
careful inspection of the same time series [see Subsection 12.1 and Tables 3 and 4].
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presented in a heuristic fashion as no asymptotic theory is supplied to support his approach. 

One could argue that the existence of a complete limit theory is a valuable but, in some 

cases, not a necessary piece of information. Unfortunately, due to the difficulties posed by 

the availability of discrete data for the estimation of continuous systems [c.f. Al't-Sahalia 

(1996a,b), Florens-Smirou (1993), Jiang and Knight (1997a) and Part I], identification is 

truly an issue. Only a complete asymptotic theory can shed light on the capacity of an 

estimation methodology to capture the features of the functions of interest. A simple ex­

ample will help clarify this point. We already described how to achieve identification of the 

diffusion function as in Florens-Zmirou (1993). As pointed out earlier, her sample analog 

estimator exploits the local dynamics of the process, i.e. her asymptotic results are obtained 

as the sample frequency increases for a given ending time T. The drift is harder to identify 

given its higher order of magnitude. Below, we specify a commonsense estimator for the 

drift function and use the same sampling method as in Florens-Smirou (1993), i.e. we let 

the data frequency increase for a given T. The following result proves that consistency can 

not be achieved.

10.1 Theorem  Given hn such that nhn —* oc and nh\ —► 0 , the sample analog estimator 

£(n)(x) [compare to (10.6)J defined as

1 E,nJ ll l{|X,/n-x|</ln>[^(i+l)An ~ A.a J

A" l{|X./n-*|</ln}

diverges at a rate given by the square root of the bandwidth as n —* oo.

A more complex asymptotic theory is needed to identify the drift. A natural extension 

is to prolong the observation period, that is to let T  —* oo as the interval between adjacent 

observations shrinks. Below, we discuss alternative estimators of the two functions of inter­

est based on the necessity of reducing the local variability induced by discrete observations 

and enhancing the availability of information through the use of a longer time span9. We 

retain the sample analog structure and we do not impose cross-restrictions in order to avoid 

invoking strong requirements on the distribution of the underlying process. A complete 

description of the asymptotic theory is contained in Part I.

9 Under the same conditions, that is as the frequency of observations increases over an enlarging time 
span, the estimates of the first order approximations to drift and diffusion function in Stanton (1997) are 
proven to be consistent and asymptotically normal [c.f. Bandi (1999) and Part III].
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11. The Econom etric Approach

We assume a Markov, possibly nonlinear, continuous data generating process as in (10.5) 

for the short-term interest rate process {r*,t > 0} [see Part I, Section 2, Assumption 2.1 

for conditions imposed on (10.5)].

The process r t is recorded at {£ = t i , t2> ••»*«} in the time interval [0,T], with T  >

To > 0, where To is a positive constant. We assume equispaced data. Hence, {rt = 

rAn.r»r2An,T> r3A«,T, rnAn,T } axe n observations at {tj. =  An,r, t2 =  2An,r , t3 =  3An,r , ..., tn 

n A ^r}  where Aflij- =  T/n . Theoretically, we want the number of sampling points (n) to 

increase as the time span lengthens (T). Moreover, we want the frequency to increase with 

n. In Part I we explore the limit theory of the proposed estimators as n —► oo, T  —* oo and 

An,r =  T /n —* 0 . We suggest the following estimators for (10.6) and (10.7).

2
a ^T)(r)  =   t -T-  (11*1)

E ,= i K ( ^ - )

with

<Tn , r ( r iAn.r ) =  m n T ( i A n > r ) A „ , r  ^  [r‘(^„.r)J+An.r -  '*t(iAn.r)J]2 (1L2)

and

with

 ̂ "ln.r(*An.T)-l

M (n,r)(r tAn,r ) =  T)/±n ~  5 1  ^ ‘(‘A n .rh + A n .r “  r t(*A„,r)j]- ( U - 4 )

The symbols have the usual interpretation. The sequence {t(iAnir)j}  is a sequence of 

random times defined as follows,

t(xAn,r)o =  inf{t >  0 : |r t -  r iAn,x | <  £n,r} (H-5)

and
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t(iAn<T)j+ 1 =  inf{i > t(iAn,T)j + An,r : \rt -  r iAn T | < £rn,r }, (11.6)

for all i. The number mn,T(iAn,T) < n counts the stopping times associated with the value 

r iA„,r  is defined as

n

mn,T{iAn X ) =  l [ | r j A n T - r l A n  T | < e n . r l

i = i

where I 4 denotes the indicator of A. The quantity en,T is a bandwidth-like parameter 

depending on the time span IT) and on the sample size (n). The function K(.) that 

appears in (11.1) and (11.3) is a kernel whose properties are described in Part I, Section 4, 

Assumption 4.1.

By looking at a long time span and high frequency observations (technically, we perform 

both 'infill’ and 'long span’ asymptotics) we aim at reconstructing as well as possible the 

theoretical path of the process.

The intuition underlying (11.1) and (11.3) is simple. As pointed out earlier, the idea 

is twofold. First, the use of stopping times in the algorithm is intended to replicate the 

instantaneous features of the theoretical functions. Notice that the averages d~ r ( riAnr) 

and Mn,r(r iA„,r) *n (H-l) and (11.3) are defined as empirical analogs to the values taken on 

by the true functions at the data points (riAnT, for example, defines the ith observation). 

The estimates a^ T(riAn,T) and Mn,r(r«A„.T) are consistent for v 2(r,AnT) and fi(r,^n T) as 

mn<j’(iAn,r) ~* 00 Vi. This is true, under suitable conditions on the bandwidths. when 

T  —► 00 provided the process is recurrent. We assume recurrence [by Assumption 2.1 in 

Part I], that is we require the f-continuous trajectory of the process to hit any point in its 

range an infinite number of times almost surely, i.e. Px{rt hits 2 at a sequence of times 

increasing to 00} = 1 Vx,2 .

Second, we apply the standard method of nonparametric smoothing to recover the two 

functions of interest from a scatter of estimates of the two functions at the data points. A 

few additional comments on the methodology are needed.

First, the assumption of recurrence is not restrictive and, indeed, makes economic sense 

because we expect interest rates to return to the values in their range over and over again.10 

In practice, we have at our disposal only finite datasets, therefore the risk of imprecise 

inference turns out to be larger in correspondence with data points that stand out as very

10 Recurrence does not imply stationarity. Brownian motion is a typical example of a recurrent, nonsta- 
tionary process.
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different from the remaining observations. In Table 1 we display the time series of the 

annualized 7-day Eurodollar rate [June 1, 1973 - February 25, 1995]. As mentioned earlier, 

this is the data utilized in Al't-Sahalia (1996a,b) and in this work, too. Outliers can be 

detected in the period 1980-1982. We expect inference to be less reliable for interest rates 

in this time range. Later on, we will discuss this problem more carefully.

Furthermore, since we are not imposing cross-restrictions, our specification is robust to 

deviations from stationarity. We believe this is an important feature of our method since it 

allows us to accommodate interest rate processes that evolve over time in a general fashion, 

as we do not require the existence of a time-invariant marginal distribution, but tend to 

return to the values in their range.

Recall that we are increasing the observations frequency as n —► oo. In other words, 

we are exploiting the local properties of the process over its dynamic range since, loosely 

speaking, we ‘‘almost” obtain a continuum of data points in the limit.

Having said this, we comment on the smoothing procedure. A rescaled version of the 

denominator in (11.1) and (11.3) converges to the stationary density of the process in 

conventional nonparametric smoothing. Here we do not use the information contained 

in the marginal density of the underlying process because the underlying process might 

not have a time-invariant marginal density. What we use is the information contained in 

the spatial density of the process. Spatial densities are well defined for stationary and 

nonstationary processes provided the semimartingale property is satisfied.

Theorem 5.1 in Part I, Section 5, gives the asymptotic expression of the (standardized) 

denominator in (11.1) and (11.3) in our specific case. We fix T  for ease of analysis but the 

intuition does not change when we let T  go to infinity provided £ =  A„tr  —" 0 [c.f. Part I, 

Section 5, Corollary 5.3). It is convenient to review the theorem here.

11.1 Theorem (Theorem 5.1, Part I, Section 5) Given n —* oo, T  fixed (= T), 

and h^j. —► 0 (as n —» oo) in such a way that =  f o r some a  € (0» s)r

estimator £?=i K( —£ ‘7—) converges to Lr(T,r) =  ^ ^ L r(T,r) a.s. where Lr ( .,.) 

is the local time of the process.

In the formulation of (11.1) and (11.3) the local time estimator is used as a conventional 

kernel estimator for the probability density of a stationary process. Our discussion in 

the introduction should clarify the sense in which this amounts to spatial smoothing and
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guarantees protection against possible deviations from stationarity. Notice, in fact, that 

Theorem 11.1 holds regardless of the stationarity of the underlying process. This is due 

to the sampling technique, which is characterized by increasingly frequent data, and the 

nature of the data generating process, which is assumed to be a semimartingale.

These observations, in turn, open up the way for the definition of statistics, based on the 

local time of the underlying process, whose meaning and descriptive power do not depend 

on the existence of a time-invariant density function. In a recent paper, Peter C. B. Phillips 

(1998) discusses how to interpret the limit local times of standardized density-like kernel 

estimators in the presence of discrete-time integrated processes in terms of spatial densities. 

Further, he comments on the usefulness of spatial densities (and various functionals of them) 

in the descriptive analysis of time series which display random wandering characteristics. 

The same approach is used here.

The previous theorem gives us a way to estimate the spatial density of a process defined 

as in (10.5). The standardization permits us to interpret the spatial density at a 

point in terms of real time units spent by the process in the neighborhood of that point. 

It constitutes the stochastic differential equation analog to the ^  normalization in the 

Brownian motion context [c.f. formula (9.3)]. We now illustrate the rate of convergence to 

the true function and give the limit distribution. The latter is mixed normal (M N ). The 

mixing variate is proportional to the spatial density itself.

11.2 Theorem  / /  hn f  —► 0 in such a way that £ —► 0 as n —* oo for an
^n,T

arbitrarily small e, then

1 , ==  ( lr (T ,r )  -  Lr(T ,r)) A  4M N  ( o , k ^ L r (T, r))

where k  = j£° f^°rmn(s,q)K(s)K(q)dsdg.

As pointed out by Phillips (1998) in the discrete-time context, this result enables us to 

construct asymptotic confidence intervals which closely resemble conventional intervals for 

probability densities obtained from kernel estimates. A 95% confidence interval for Lr(T, r) 

is given by

/  _  X1' 2
Lr(T, r) ±  1.96 f l 6k ^ y Z r ( r ,  r) J  .

66

Reproduced w ith permission of the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

The spatial density estimator replaces the standard density function estimator. The scale 

factor 16k accounts for the time dependence in the observations as the Brownian covariance 

kernel appears in the definition of k.

Notice that the limit process Lr(T ,r ) is a random variable.11 Spatial densities have a 

time dimension, as opposed to probability densities. Their time dimension can be fruitfully 

explored.

Following the lead of Phillips (1998), we can define functionals of spatial densities such 

as local or spatial hazard rates. The spatial hazard Hr(T,r) associated with a spatial 

density Lr(T, r) can be represented as follows,

7?r (T,r) =   (11.7)
j~ L ,(T ,y )d y

This definition allows us an easy interpretation in terms of spatial analogue to standard haz­

ard functions obtained from time-invariant probability densities. Spatial hazard functions 

offer, once more, an easy generalization to the potentially nonstationary case by virtue of 

the use of the local information contained in the continuous process. Formula (11.7) has a 

standard meaning: it gives the conditional risk over the period [0, T\ of an interest rate level 

of r, given that interest rates are at least as big as r. Again, the time dimension adds up 

to the traditional definition and permits us to investigate how the conditional risk evolves 

over time. The following theorem gives us a way to recover spatial hazards from sample 

analogues constructed from estimated spatial densities.

11.3 Theorem  Given hn f  —► 0 (as n —* oo) in such a way that -^a'(An y )1̂ 2_£ —» 0 for
n . T

an arbitrarily small s, the estimator Hr(T, r) defined as — zr-=r —̂ converges to Hr(T,r)
L r (T ,y )d y

a.s. Moreover,

- 4 =  (S r(T,r) -3?r(f,r)) 4. 4AW (o.
J h nT  v '  \  & (r)Lr(T,r)

where k =  f 0°° J^° mm(s,q)K(s)K(q)dsdq.

In what follows we will provide traditional descriptive statistics whose interpretation is

straightforward should stationarity hold. Further, we will thoroughly examine the locational

properties of the short-term interest rate series using the apparatus described above.

11 In the stochastic processes jargon, we would say that it is a random variable (for fixed t) and a function 
of t (for a given m € fl).
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Before moving to the implementation of our method, we turn to a concise description 

of the limit theory of the estimators in (11.1) and (11.3) [see Part I for details]. We start 

with the consistency of the diffusion function estimator.

11.4 Theorem  (Theorem 5 .5 , P a rt I, Section 5 ) Given n —► oo, T  —*■ oo, h n j  0

(as n ,T  —► oo) such that —► 0 and n,r)Q =  Oa.s.{ 1) for some a  6  (0, 5),

and en<T —* 0 (as n ,T  —» 00) such that -+  0 and n, r ) ^  =  Oa.a.(l) for some

(3 6  (0, 5), the estimator

E I U K a.s. 2/ ,

 v -  ----------- * (r)

where ffn,:r(r «An,r) “  defined in (11.2).

The following theorem gives the asymptotic distribution and the rate of convergence.

11.5 Theorem  (Theorem 5.6, P a rt I, Section 5) Assume that n -* 00. T  — 00, hn,T 

—* 0 (as n, T  —► 00 j such that ^ — —» 0 and (An,r)Q = Oa.a.(l) for some a 6  (0, 5), 

and £r,,:r —* 0 (as n ,T  —>00) such that —> 0 and -^—-̂ (Anj-)^ = Oa.».( 1) /or some

£ e ( 0, j ) .

/ /  —► 0, enj L r{T,r) 0 and /in,r  =  o ^ r ) ,  then

/ l r (T,r)gn,r N  ^  2er4(r) ) . (11.8)
V *Vr

f / — o,12 £nyTLr(T, r) a-2  0 and V r  = 0(e„,r) unth hn<T/en,T -* O > 0, then

^ ~ r(^ ~T' ( ^ ’r (r ) ~ g2(r )) ^  iY (°’20«°'4(r )) • (u -9) 

u/hene 0* =  J / ! ^  *1̂  K(a)K(e)dzdade.

As pointed out earlier, we are letting T  and n go to infinity. If we had at our disposal 

frequent data (n —► 00) over a fixed time span (T =  T), we could still estimate the function 

consistently. T  going to infinity is a technical device introduced to exploit the recurrence 

of the process in the estimation procedure. Recurrence is crucial in the estimation of the

12 If 0 0 , then (11.1) still converges to a mixed normal distribution. This is the distribution to
which the “bias’* term in the estimation error decomposition converges [see Part I].
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drift function. In the case of diffusion estimation we do not need to require infinite passage 

times to identify the true function. This point is coherent with a statement in footnote n.l 

of a 1979 paper by S. Geman, where we read

“<t(A) can, in principle, be determined from any interval containing a single 

crossing of A”.

For a fixed T  (= T), we can rewrite (11.8) as follows:

v ^ f ( -  " V l f 4  M N  '

The conditions on the bandwidths hn f  and en f  reduce to

£n,T <xn~kl with fci €

and

hn.T ccn~h7 ^2 € ^0,

with

K , t  ~  ° ( e n , f ) -

If ^n,T =  &(£n,f) with hn f / e n f  —* 0  > 0 , what changes in the limiting distribution is 

simply the constant of proportionality in the asymptotic variance term. In consequence, 

we just need to multiply the scalar 2 by a scalar whose value depends on the value that 

the constant 0  takes on, that is 0$ = \  K(a)K(e)dzdade. In both

cases the rate of convergence is V/Tl£n̂ ,  which is the standard rate in functional regression 

analysis, and the asymptotic variance is inversely related to Lr(T,r) or, equivalently, to 

the number of time units spent by the process in the spatial neighborhood of a point. 

Intuitively, even though repeated visits are not necessary for consistent estimation of the 

diffusion function, the larger the number of visits to a point in the range of the process, the 

more precise will be the estimation of the diffusion at that point.

We now consider the drift estimator. Again, we state consistency for the true function 

and give the asymptotic distribution.
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11.6 Theorem  (Theorem  5.11, P a r t I, Section 5) Given n —► oo, T —► oo, /in,r ~> 0 

(as n ,T  —► oo) such that —*• 0 and Lj^ -̂ (An,r)a =  Oa.3.(l) for some a € (0,5 ).

and en<T —* 0 (as n ,T  —* 00) such that —* 0 and (Aw,r)^ =  Oa.s.(l) f 0T some

(5 €  (0 , 5 ), and provided £nirL r(T,r) 00, the estimator

£ r= lK (  *£Tt )Mn,r(r»A„,r) a.3. , ,
—------      —► uiv)

r/vr*An.r r 'j
Z^«=l “ A hn T ) 

where “  defined in (11.4).

11.7 Theorem  (Theorem  5.12, P a r t I, Section 5) Assume that n —* 00, T  —* 00, 

hn,T —* 0 (as n ,T  —► 00) such that ^21 —*• 0 and (An,r)Q = Oa.a.(l) f or some 

a € (0, 5 ), and —► 0 (as n ,T  —*■ 00 j such that —► 0 and (An<r)^  = Oa.j.(l) 

/or some ,3 6 (0, 1), and en.r^ r (r , r) 00.

/ /  V t  =  °(2’n,r), then

yjLr{T,r)en<T (fin,T(r ) ~  h(r)) ^  MiV ^0 , ^<r2(r)^ . (11.10)

7/ hn,T =  0 (£ „ ,t )  w th  hn>T/£ n,T —■ 4> >  0, then

yjLr(T,r)en,T ( f t ^ r )  -  /i(r)) -  A/JV (0 , ± V V ) )  (H -H )

where 9<> = \  JT^ f(?-i)/£ J'(z-t)/Z K(a)K(e)dzdade.

The drift term cannot be identified nonparametrically over a fixed time interval, no 

matter how frequently the data is sampled [c.f. Theorem 10.1] unless cross-restrictions 

are imposed. Here we are lengthening the sample span (T —» 00) as the frequency of 

observations increases (n —* 00). We do so to gain information on the theoretical function 

through repeated visits to a point. In other words, when estimating the drift, we need to 

use the information on the trajectory of the process over its entire dynamic range. Since 

local arguments as in the case of diffusion estimation can not be utilized, three are the main 

consequences [c.f. Part I for details]:

[1] Contrary to diffusion estimation, the stochastic properties of the underlying process 

play a vital role in the drift estimation.

[2] The rate of convergence of the diffusion estimator ( y ^ ^ y >,r) is faster than the 

rate of convergence of the drift estimator ( y L r(T,r)£n^T).
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[3] The admissible spatial bandwidth £Uit  must converge to zero at a slower pace than 

the corresponding bandwidth in the diffusion case. Furthermore, apart from specific 

cases such as Brownian motion [c.f. Part I, Section 5, Remark 5.16], it is not possible 

to express in closed-form the main condition that the window width £n,r needs to 

satisfy, that is Lr(T,r)en,T ^  °o.

Should T  be fixed, then the local time factor, Lr(T,r), would be Op( 1) rather than tend 

to infinity almost surely and the estimator would diverge at a speed equal to ^g== [c-f. 

Theorem 10.1 in this chapter].

The idea behind the consistency of the drift estimator is simple. Even in finite samples, 

it is possible to identify the drift function in a situation where the diffusion term is treated 

as a nuisance parameter, provided the sampled data is ‘̂ sufficiently” recurrent. In our case, 

we require the data set to be characterized by repeated observations in the neighborhood 

of each interest rate level. We can phrase this condition differently and say that we require 

the data set to be affected by few outliers. This is a standard requirement when we are 

interested in reliable statistical inference. Then, the issue is how to assess the recurrence 

properties of the specific data set at hand. A possible rule of thumb in our framework is 

to estimate the spatial density of the sample process at each point and verify its order of 

magnitude. A large spatial density at an interest rate level implies repeated passages in the 

vicinity of that level and, in consequence, satisfactory inference. In what follows we will 

study the local time process to describe the locational features of the short-term interest 

rate series and detect areas where inference might be imprecise due to the lack of sufficient 

data points.

A final observation on the limit theories is needed. Recall from the previous chapter 

that the normalizations in theorems (11.5) and (11.7) are random because of the presence 

of the local time factor Lr(T,r) 2. As T  diverges to infinity, the chronological local time 

Z>r (T, r) of the process rt diverges to infinity  as well since rt is recurrent. Hence, the rate of 

convergence depends on the asymptotic divergence characteristics of the chronological local 

time Lr(T, r). As a consequence, the rate of convergence is, in general, path dependent 

[Part I, Section 5, Remark 5.10].13

We now turn to the implementation of the method.

13This is not the case if rt is Brownian motion. In this case the convergence rates are y € n,TT$/A n,r and 

y £n,rT^ and are not path dependent [Part I, Section 5, Remark 5.10]
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12. Im plem entation

12.1. The data

The proposed methodology requires a long time series of high frequency observations. Nev­

ertheless, due to the risk of spurious microstructure contaminations, the proper use of such 

series is an issue which goes beyond the scope of this work. We compromise by using a less 

ideal but still suitable series, namely the seven-day Eurodollar deposit spot rate, bid-ask 

midpoint.14 This data was previously used in Al't-Sahalia (1996 a,b). Our description of 

the data is based on Al't-Sahalia’s work and we refer the reader to his papers for a complete 

discussion. The data points are daily observations from June 1,1973 to February 25,1995.15 

The total number of observations is 5505. The rates quoted were originally bond-equivalent 

yields. They were transformed to continuously-compounded yields to maturity (annualized 

rate). Weekends and holidays do not receive special treatment but weekend effects [e.g. 

French and Roll (1997)] do not seem to be a major concern for money-market instruments. 

Monday is taken as the first day after Friday. A time series plot of the data is contained 

in Figure 1. Figure 2 provides a time series plot of the first differences. Table 1 contains a 

summary of the characteristics of the data whereas Table 2 gives some standard descriptive 

statistics.

We stressed before the necessity of devising estimation procedures robust to deviations 

from strong distributional assumptions. In effect, it is hard to claim that the data in 

question is, without any doubt, stationary. We perform conventional Augmented Dickey- 

Fuller (ADF) tests both with a constant term and a trend, and with only a constant in 

the deterministic part of the fitted regression. The order of the time polynomial is set 

equal to one whereas the number of lagged first differences is set equal to five.16 The test 

systematically accepts the null at all conventional levels [Tables 3 and 4]. In the literature, 

even slight rejections (and this is not the case here) are interpreted as evidence in favor 

of stationarity due to the low power of the test [for example, Al't-Sahalia (1996 a,b) and 

Jiang and Knight (1997a)]. We verify the previous outcome by implementing a different

u As Ai't-Sahalia (1996a) points out, choosing a seven-day rate is “...a compromise between: (i) literally 
taking an uinstantaneous” rate and (ii) avoiding some of the spurious microstructure effects associated with 
overnight rates...".

15 The Monte Carlo evidence in Jiang and Knight (1997b) and in Part III suggests that daily frequencies 
are good approximations to frequent sampling for estimators relying on increasingly frequent observations.

lsDifferent plausible values do not affect the results. For the sake of comparison, we worked with up to 
30 lagged first differences. This is the number of lags used in Al't-Sahalia (1996a). In the constant/trend 
case the test accepts at all conventional levels. In the constant case, the first rejection occurs with 30 lags, 
at the 10 percent level. This outcome is consistent with the result reported in Al't-Sahalia (1996a).
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testing procedure based on Phillips’ (1987) Za and Zt statistics. Z tests generally have more 

power than the AD F  test.17 Again, we consider both the constant/time trend case and the 

constant case. The number of autocovariance terms to compute the spectrum at frequency 

zero is set equal to five.18 The automated “optimal” bandwidth case is also evaluated as it 

usually delivers quite different results. In all cases the test accepts at the 1 percent critical 

level. Results are mixed at the 5 percent level and generally in favor of stationarity at the 

10 percent level, with the only exception being the Zt test when both a constant and a trend 

are included [Tables 3 and 4].

Since the series displays time intervals of fairly regular behavior and relatively low 

volatility (1973-1980 and 1982-1995), we apply the same tests to subperiods in order to 

assess the influence of higher volatility periods on the test results. A pattern seems to 

emerge: higher volatility periods inject stationarity in the data. Even though the null 

is very rarely rejected, the test values appear to be closer to the corresponding critical 

values in the presence of more volatile data. For instance, over the period 1973-1980 the 

null of nonstationarity is never rejected and the statistic values are very safely located 

in the acceptance region. When we add the more volatile data between 1980 and 1982, 

the overall picture remains quite unequivocally nonstationary, but our statistics appear to 

deliver values closer to the rejection threshold. The same applies to the data in the period 

1982-1995 versus the longer period 1980-1995.

For the time being, it seems safe to say that standard testing procedures do not offer 

unambiguous support to the stationarity assumption and justify the use of investigation 

methods robust to deviations from it.

12.2. A look at the spatial characteristics of the data

Some authors have recently modelled the spot interest rate process as a randomly shifting 

process with no fixed mean [c.f. Das (1994) and Naik and Lee (1993), inter alia\. Al’t- 

Sahalia (1996b) proposes a simpler modelling alternative to time-inhomogeneity which is 

based on the nonlinearity of the drift and diffusion functions. The idea is that sufficiently 

general specifications in the stationary time-homogeneous class can determine multimodal 

densities resembling regime shifts. Here, we suggest a direct way to study data that display 

irregular behavior. We look at the time spent by the sample process in each point of

1' As far as size is concerned, the ADF test is generally less subject to distortions, especially in the presence 
of MA(l) errors with parameter close to one [Phillips and Perron (1988)].

u Results are not qualitatively altered by different specifications.

73

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

its range and examine how this evolves over time. Our underlying process maintains the 

simplicity of time-homogeneous specifications but, at the same time, is general enough to 

allow for nonstationarities.

We consider three different time horizons: 1973-1980, 1973-1982 and 1973-1995 [c.f. 

Section 14 for details on the implementation]. Our interest in the change that occurred 

between 1980 and 1982 is motivated by the corresponding ‘‘atypical” behavior of the series. 

As briefly mentioned earlier, this period is characterized by high volatility [see Figure 2] 

and high interest rates [see Figure 1]. These features make inference more difficult. Below, 

we clarify the nature of these difficulties.

We start with the period 1973-1980. The spatial density of the process appears to be 

bimodal [Figure 3 (a)]. The modes show up at around 6 percent and 11 percent. When 

we add the data from 1980 to 1982 [Figure 3 (b)], we recognize persistence in the previous 

features and the emerging of two additional modes associated with higher interest rate levels 

around 15.5 percent and 18.5 percent. As we move to considering the whole data set, we 

expect to find evidence of a prolonged passage of the series below the 4 percent line but 

still in its vicinity. This is confirmed by our estimated spatial density displaying a minor, 

additional mode at the corresponding value [Figure 3 (c)].

Given the features of the estimation procedure, in a finite sample we expect to be able 

to identify very well the true functions of interest at points that are visited often. After a 

quick look at the graph of the estimated local time in the full period 1973-1995 [Figure 3 

(c)] we anticipate that problems will arise for interest rates in the 20-24 percent range, as 

the time spent by the sample process in this range is fairly small.

In Figure 4 we report our results for the spatial hazard rate process. In the period 1973- 

1980 we recognize a non-monotonic increase in the interest rate risk [Figure 4 (a)]. Two 

peaks can be detected, around 6 percent and 11 percent. Notice that they correspond to the 

modes of the sojourn density in the same period. When we include the observations from 

1980 to 1982 [Figure 4 (b)], the already identified peaks survive and two new ones emerge 

roughly at 16 percent and 20 percent. Notice, also, that the confidence bands are very broad 

at interest rates above the 20 percent threshold, implying unreliable inference. It is worth 

recalling that the same information is contained in the estimated spatial density. In effect, 

the empirical process appears not to spend much time in the 20-24 percent range. This 

justifies the uncertainty embodied in the wide confidence bands.19 The same considerations

19 A similar feature will characterize the estimates of the two functions of interest, whose asymptotic
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apply to the full period 1973-1995 [Figures 4 (c)].

A simple accounting exercise further clarifies the information contained in the estimated 

spatial density. Between 16 percent and 18 percent we have at our disposal 80 observations. 

The number increases to 114 between 18 percent and 20 percent but it is only equal to 28 

between 20 percent and 22 percent. The number of observations in the 22-24 percent range 

is 3. Most of the data is concentrated in the 6-8 percent and 8-10 percent ranges: 1197 and 

1516, respectively. In what follows we will inspect the drift and diffusion functions in the 

range up to 22 percent. In fact, the dimension of the empirical local time of the process for 

interest rate values above the 22 percent threshold would make inference very unreliable.

12.3. Non parametric results

Moving to the estimation [c.f. Section 14, Subsection 14.1] of the curves of interest, Fig­

ure 5 (a) and Figure 5 (b) plot the nonparametric estimators, with 95 percent asymptotic 

confidence bands. The drift term appears to be nonlinear as opposed to most conventional 

parametric specifications [c.f. Section 10 and the next subsection]. Nevertheless, it mean- 

reverts strongly only when it approaches the upper bound of its range. Up to values close 

to 15 percent, the short-term rate virtually behaves as a martingale, since the drift is sta­

tistically significant but economically negligible. In Al't-Sahalia (1996b) the drift reverts at 

both ends of the theoretical domain due to the adopted parametric specification but is very 

close to zero between 3 percent and 24 percent, that is over the sample domain. Al't-Sahalia 

(1996a) assumes a linear mean-reverting drift from the start. Stanton (1997) and Jiang

(1998) work with a different series20 but their drift dynamics resemble the general features 

of our findings. Similar to the results in Al't-Sahalia (1996b) is the drift estimate in Jiang 

and Knight (1997).21 A common feature of this literature is to imply the unpredictability 

of the short rate over most of its range since the process evolves over time as a martingale. 

Mean-reversion comes into play only at the extremities of the sample range.

The nonlinearity of the drift could account for atypical dynamics. In effect, during the 

1980 to 1982 period a change in parameters seems to occur [c.f. Figure l ].22 The estimated

confidence bands will be broad around the upper bound of the range of the sample process.
i0They both use daily values of the secondary market yields on 3-month U.S TVeasury Bills. The time 

horizon is January 1965 - July 1995 in Stanton (1997) and January 1962 - January 1996 in Jiang (1998). 
The series is converted from discounts to annualized compound rates.

11 They use daily data of the Canadian 3-month treasury bill rate from January 2, 1982 to January 31, 
1995.

"  Al't-Sahalia (1996b) reports that “...the mean a of the process with drift fi(r, 8) =  3(a — r) estimated 
over 1980 to 1982 is significantly higher than the mean estimated on the rest of the sample..."

75

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

drift appears to capture this shift as it displays nonlinearities for high interest rate values, 

largely corresponding to the same period. In general, as AYt-Sahalia (1996b) points out, 

misspecified linear models for the drift can hide nonlinearities as changes in parameters. 

We will come back to this point later on.

We now turn to the estimates of the diffusion function. The diffusion term exhibits quite 

conventional dynamics (CEV diffusions, for example) up to interest rate values around 16 

percent. Volatility tapers off between 18 percent and 20 percent and then rises again. 

A comparable result is contained in Jiang (1998). Up to 16 percent, his nonparametric 

diffusion mimics the behavior of an estimated parametric CEV diffusion. Above 16 percent 

his estimates suggest less volatility than implied by a monotonically increasing parametric 

function in the CEV class. The diffusion function in Jiang and Knight (1997) displays a 

“‘smile” with lower volatilities associated with interest rates at the lower end of the range 

and in the middle. In Alt-Sahalia (1996b) the “instantaneous” conditional volatility of the 

process has U-shaped dynamics. It is equal to about 1.7 percent at 0. It decreases to about 

0 at 11 percent and then rises steadily. Its domain of variation over the sample range is 

between 1.25 percent (at 4 percent) and about 4.3 percent (at 24 percent). The estimated 

diffusion in Alt-Sahalia (1996a) is increasing over the range of the sample process but this 

increase is non-monotonic. The function has an absolute peak at about 17 percent. The 

diffusion function in Stanton (1997) is monotonically increasing.

In the next subsection we will see that a CEV diffusion with an exponent equal to 3,

1.e. <x2(r) =  const.r2. fits our data very well up to about 16 percent. When paired with a 

drift function which is almost zero over the same range, such a diffusion function determines 

possibly nonstationary dynamics. In effect, the model

drt = const j \^ d B t  (12.1)

which appears in Cox (1975) and CIR (1980), implies recurrent [Assumption 2.1 in Section

2, Part I, is satisfied] and nonstationary [c.f. Table 1 in AYt-Sahalia (1996a)] behavior for 

the spot interest rate series over (0 ,oo).

Here we are not taking a stance on stationarity. We simply notice that using a method­

ology that is robust to deviations from the existence of a time-invariant marginal density, 

we obtain shapes for the two functions of interest that give support to the necessity of being 

cautious about the stationarity of the series in question. This point is coherent with the
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results of our preliminary unit-root tests.

We now discuss the significance of the estimated nonlinearities at high rates.

12.4. A parametric comparison

A quick look at the overall shape of the two functions suggests that some conventional 

parametric models might not be severely misspecified. For instance, between 0 and about 

16 percent the dynamics of the interest rate diffusion function can be well replicated by a 

conventional CEV model for the instantaneous variance. This observation is important. By 

not specifying a particular parametric structure, functional methods avoid misspecifications, 

but do so at the expense of a greater estimation error than their parametric counterparts.

Here, we undertake a simple exercise to assess whether credible traditional parametric 

models lead to reliable inference in the presence of well behaved functions like the ones 

we have just estimated. The estimation method we use is a conventional GMM [see CKLS 

(1992) for a well-known application). Notice that we do not attempt to estimate consistently 

parametric continuous models by use of discretely sampled data. We only intend to compare 

the outcome of a naive23 but very commonplace technique to our previous findings. We 

assume, for simplicity, a continuous-time model as in CKLS (1992), namely (10.4) with 

<*2, <*3, a 4, $o, A  = 0 , that is

drt =  (qo -F ct\rt)dt 4- { \ J &>rf*)dBt

= (q0 +  <*i n)dt •+• (70r?1 )dBt (12.2)

where r  is the spot interest rate and B  is a standard Brownian motion. As usual, alternative 

conventional models of the short-term riskless rate of interest can be nested in the specifica­

tion in (12.2) with appropriate parameter restrictions [c.f. Section 10). For instance, 07 =  0 

and 71 =  0 deliver the Merton model (1973). Provided a i < 0 and 71 =  0, formula (12.2) 

gives the Omstein-Uhlenbeck process in Vasicek (1977), whereas 71 =  1/2 characterizes the 

process introduced by CIR (1985). The constant elasticity of variance (CEV) specification

13 Discretizations are approximations. The relationship between parameters in the continuous-time format
and in the discrete time analog is not straightforward [see, for instance, Drost and Werker (1996) and Nelson
(1990)]. Recall, also, the temporal aggregation problem in Grossman, Melino and Shiller (1987), Breeden,
Gibbons and Litzenberger (1989) and Longstaff (1989b, 1990a). Despite all this, there is a tendency to
think that the error introduced by discretizing is of second order importance if changes are measured over
short periods of time [CKLS (1992) and Campbell (1986)]. This point provides a justification for using the
procedure with daily data [note that CKLS (1992) use monthly observations).
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proposed by Cox (1985) and Cox and Ross (1976) requires oto =  0. In Brennan-Schwartz 

(1982), 7 i is equal to 1. We consider the discrete-time econometric specification,

f't+i—J’t =  c*o +  4-£h-i (12.3)

E[et+1] =  0, E[e?+1] = 7o^ 1

We follow CKLS (1992) in defining the relevant moment conditions.24 The results of this 

exercise are reported in Table 5.

We start with the drift function. All the parameter estimates are significant. In CKLS

(1992) the drift parameter estimates are statistically insignificant, implying that a linear 

mean-reverting structure fits our data set better than the data set examined in CKLS (1992). 

A graphical comparison between our functional estimates and their parametric counterparts 

is contained in Figures 6 (a) and 6 (b). Obviously, nonlinearities cannot be captured by 

a linear parametric structure. Nevertheless, nonlinear dynamics do not play a substantial 

role up to the upper extremity of the range of the sample process. Note that up to about 

15 percent our nonparametric drift is measured precisely in a tight neighborhood of zero. 

Still, the parametric specification displays mild mean-reversion. Where nonlinearities arise, 

the unrestricted parametric model seems to mimick sufficiently well the behavior of the 

functional estimates with the exception of interest rate levels above 20 percent. Moreover, 

the parametric curve lies within our asymptotic 95 percent bands. This is an important 

point. A vanishing nonparametric drift up to about 15 percent implies that the interest rate 

process behaves as a martingale over a region of its range. Further, the tight nonparametric 

confidence bands in the same region and the shape of the asymptotic bands of the parametric 

drift function25 suggest that the difference between our nonparametric specification and the

*4Define a vector 0 with elements Qo, at, 7o and 7i- Given £t+i = rt+i — rt — ao — atn , let the vector 
ft(0) be

m  =
st+i

£t+i rt 
£?+i ~  7o 

.  ( e ? + t - 7 o r f T l ) r t

If the restrictions implied by the discrete time model hold, then E[ ft(8)\ =  0. This observation provides 
us with a set of four moment conditions. In what follows we utilize the optimal weighting matrix Wt(0) =  
y (£ ^ .l /t(0)/t(0),). The asymptotic covariance matrix can be consistently estimated by

t= i t=i

25 We use the A—method to compute parametric confidence bands.
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parametric model is statistically significant [Figure 7]. Less clear-cut is the behavior of the 

drift function at higher interest rates, that is from 15 to 20 percent, and around the upper 

bound of the range of the sample process, that is above 20 percent. Nonlinearities come 

into play in a region where the available data is fairly thin. Here the linear parametric 

model can hardly be rejected on purely statistical grounds. Nevertheless, as demonstrated 

by the large nonparametric confidence bands and by the relatively large parametric bands, 

the overall uncertainty in this region suggest caution in interpreting our results.

The parametric model is more satisfactory for the estimation of the diffusion function. 

The specification is nonlinear. The CEV structure only fails to capture dynamics such as 

those detected for interest rate levels around the upper bound of the sample process. Up 

to 16 percent, the nonparametric and the parametric curves overlap almost perfectly. Not 

surprisingly, the parametric exponent in the variance term is estimated very precisely. This 

is a conventional result. In CKLS (1992) 71 is about 1.5 and almost two standard errors 

above one. Further, all models which make 71 < 1 are rejected. Our estimated 71 takes 

on a similar value. Even though a more complex specification is needed to fit the diffusion 

curve around the upper bound of the interest rate range, the estimated parametric diffusion 

lies almost everywhere within our estimated asymptotic bands.

Some observations on the behavior of the functions at high rates are in order at this 

point. If we believe the dynamics of our interest rate series can be described by a stochastic 

differential equation then, as pointed out by many authors including Al't-Sahalia (1996b) 

and CHLS (1997), traditional parametric structures do not completely capture the overall 

behavior of the series in the relevant domain. One could also argue that the series cannot 

be described by an homogeneous process in the period from 1980 to 1982, corresponding 

to high interest rates, since regime shifts are likely to occur (the rest of the series is fairly 

well behaved). We believe this issue should not be a major concern. We are not inclined 

to support the shift-in-regime point of view because nonlinearities such as those detected 

for high interest rate values (in the period 1980-1982) can produce dynamics resembling 

time-inhomogeneous changes. Thus, our findings appear to support one of the conclusions 

in Al't-Sahalia (1996b), namely

“..models, like linear drift and CEV diffusion, mil mask nonlinearities as changes 

in parameters...'"'26.

J8CKLS (1992) conclude that the shift in the Federal Reserve monetary policy in October 1979 did not
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We now look at the plausibility of a nonlinear mean-reverting drift from a statistical 

perspective. Some complications arise. First, even assuming stationarity, the drift func­

tion is not constrained to display a specific shape at high rates provided the elasticity of 

the CEV instantaneous variance is sufficient to balance the drift dynamics and determine 

reversion to the center of the stationary distribution of the process. This point is made in 

CHLS (1997). They show that what matters for mean-reversion is a “pull” measure defined 

as the ratio between the drift and two times the diffusion function. Stationarity can be 

volatility-induced. In consequence, should the series be stationary, the uncertainty related 

to the lack of sufficient observations at high rates would add up to the absence of a strong 

theoretical motivation for drift-induced mean-reversion. This would make conclusions on 

the dynamics of the drift at high rates quite arbitrary. The potential nonstationarity of the 

series complicates matters even further.27

Second, at the edges of the sample range the drift is more easily biased in small samples. 

As for the upper bound, we know with near certainty that the maximum value achieved by 

the interest rate process in our sample is almost surely lower than the theoretical maximum 

value. Hence, the drift term is almost surely too low at the upper edge of the distribution 

of the data. The contrary is true for interest rate values at the lower bound. Still, the 

size of the bias depends on the volatility of the sample process. The volatility is very 

low at the lower edge of the sample but, as we discussed before, quite high at the upper 

edge. Therefore, a downward bias is more likely to occur at high interest rates,28 thus 

strengthening our concerns related to the thin data available.29

Finally, as pointed out earlier, the estimated parametric curves lie within our asymptotic 

confidence bands for high interest rate values. Hence, the simple unrestricted parametric 

model proposed here cannot be statistically rejected for values in the vicinity of the upper 

bound of the sample process.

result in a structural break in the interest rate process. They interpret this result as suggesting that their 
volatility structure (our unrestricted CEV specification) is rich enough to capture the apparent change in 
the interest rate behavior in the post-1979 period.

srThese observations are somewhat stronger than one of the conclusions put forward in concurrent work 
by Jones (1998): in a Bayesian framework, he shows that the use of uninformative Jeffreys priors does not 
result in statistical evidence for a nonlinear drift unless stationarity is imposed.

MI thank Chris Sims for pointing this out to me.
*9In independent and parallel work, Chapman and Pearson (1998) reach a similar conclusion using a 

weighted least-squares estimation procedure applied to the data set in this paper and in Stanton (1997). 
They also show that the estimation methods proposed by Stanton (1997) and Alt-Sahalia (1996b) suggest 
non linearities of the type reported in the corresponding papers even when applied to sample paths simulated 
Grom a (linear mean-reverting) square root process. They conclude that the nonlinearity of the short term 
interest rate drift is not a “stylized fact".
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To summarize, certainly small sample biases do not affect our functional estimation pro­

cedure for the drift in the range up to 16 percent. The spot rate behaves as a martingale up 

to about 16 percent. At higher values it mean-reverts nonlinearly but a standard paramet­

ric linear mean-reverting model for the drift cannot be rejected in this region. Our results 

appear statistically unreliable, even though economically sensible, for interest rate values 

between 20 percent and 22 percent. This observation can be applied to most papers in the 

literature since nonlinearities usually play a role in scarcely populated regions of the spot 

interest rate domain. Notice, though, that if we were interested in pricing, then potentially 

imprecise inference for interest rate levels that are hardly ever visited should not be a major 

concern.

13. Conclusion

A new descriptive and estimation approach for possibly nonstationary diffusion processes 

is implemented. As for the descriptive side of the suggested methodology, we extend re­

sults recently illustrated by Phillips and Park (1998) and Phillips (1998) in the unit root 

econometrics literature, to tackle the investigation of the spatial characteristics of time se­

ries modelled as solutions to potentially nonlinear and nonstationary stochastic differential 

equations. We construct and study spatial densities and spatial hazard rates. Further, we 

discuss how to use the information contained in the spatial dynamics of the underlying 

process to help develop a flexible approach to the functional estimation of stochastic differ­

ential equations under minimal assumptions on the distribution of the underlying process 

and using only a discrete sample of observations [c.f. Part I for a rigorous treatment]. We 

believe it is of primary importance to be able to achieve identification of both the drift 

and the diffusion function in situations where one of these is of primary concern and the 

other function is treated as a nuisance parameter. In effect, estimation without resorting 

to cross-restrictions permits us to obtain reliable inference when restrictions are hard to 

impose, namely when the solution to the stochastic differential equation is nonstationary. 

As a matter of fact, the evidence regarding the stationarity of some crucial financial time 

series, such as interest rates and exchange rates, is quite ambiguous.

We apply the new methodology to the analysis of the dynamics of the short-term interest 

rate process in continuous-time. We use a well-known data set in empirical finance, namely 

the Bank of America 7-day Eurodollar spot rate (midpoint bid ask) [Al't-Sahalia (1996a,b)].

In this work we provide statistical evidence of martingale behavior for our interest rate

81

Reproduced w ith permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

series over the restricted range up to about 16 percent. This suggests that the short-term 

process displays less predictability than implied by a linear mean-reverting structure for the 

drift. As for the nonlinearity of the drift at values between 16 percent and 22 percent, we 

cannot interpret it as a purely economically driven phenomenon, due to the possibility of a 

small sample bias in this range. This is particularly true in the range between 20 percent 

and 22 percent. In effect, “the time spent” by the empirical process at values about its 

upper edge is very small, thus making conclusions based on statistical inference potentially 

arbitrary. In consequence, we do not attempt to put forward conclusions on the dynamics 

of the drift about the upper extreme of its range. We only suggest that, after we take into 

consideration the potential for statistical artifacts, the non-linearity of the drift can account 

for the atypical dynamics often interpreted in terms of structural breaks or regime shifts. 

A parametric CEV structure mimics very well the behavior of the diffusion function over 

most of its domain.

In a recent paper, Pritsker (1998) points out that methods based on the estimation of 

the marginal density of the interest rate process [for example, Siddique (1994), Al't-Sahalia 

(1996a,b) and Stanton (1997)] fail to account for the effects of time-dependence in finite 

samples. The method suggested in this work relies on a more general notion of density and 

the temporal dependence in the trajectory of the short-rate process plays a role.

Note that our functional drift and diffusion functions can be used to test alternative 

parametric models of the short-term interest rate process based on a testing methodology 

that matches parametric specifications to their nonparametric counterparts. Due to the 

larger identifying information and the generality of “spatial” methods, this procedure is 

likely to have better size properties and more power than testing methods based on density- 

matching [c.f. Pritsker (1998)].

14. Proofs and Technical D etails

14.1. The choice o f the kernel and window widths

The smoothing parameter hn f _ l and the spatial smoothing parameter en y_1 are set as

^n,T=l — Ch<Jrn 

en ,r= i =  c£a rn - k‘
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where Sy is the estimated, unconditional standard deviation of the series over the period 

of interest, n  is the number of observations, k^, ke are positive exponents depending on the 

limit theory of the specific estimator and ĉ ., ce are constants of proportionality. For practical 

purposes, T  is set equal to 1.

14.1.1. Estimation of the sojourn times and spatial hazard rates

We use a second order Epanechnikov kernel as it simplifies calculations for the hazard 

functions, i.e.

K(x) =  3 / 4 ( 1 - x 2) l {_ u}

We set <4£ime = 3.5 and = j .  The value for the constant is chosen to guarantee

informativeness. In the periods 1973-1980. 1973-1982 and 1973-1995, the numerical values 

of the smoothing parameters are 1.455 percent, 2.05 percent and 1.459 percent, respectively.

14.1.2. Estimation of the drift and diffusion function

We employ a Gaussian kernel, but the use of an Epanechnikov or an exponential kernel 

would not change qualitatively the results. The drift window widths are set as follows:

3.5 
1 
4 
4 
1
4'

As for the diffusion window widths, we set

cf7 /  =  3.5

=  7h 4
4 i f f  =  3.6

*?" = i
The pairs k^ 1 and are chosen equal to 3.5 and |  for coherence with

(htme and k%tme. The values 4 * ^  =  3.6 and (4n^  =  4 are set larger than =  3.5 =
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(Mime jn consequence, the limiting distributions that we use in the paper are (11.8) and 

(11.10). The constant =  3.6 is set smaller than Ce” ^  =  4 for consistence with the 

asymptotic theories [c.f. discussion in Section 11]. Different (but plausible) values for dt*** 

that are chosen to be larger than do not affect the results qualitatively.

The numerical value of and hd'U  is 1.459 percent. The numerical values of then,i=l n , l = l

spatial bandwidths and s ^ ^ a r e  1.6 percent and 1.5 percent, respectively.

14.2. Proof of Theorem 10.1

Assume the same model and the same properties as in Florens-Zmirou (1993). We follow 

Florens-Zmirou (1993) in the proof. Consider the quantity

M(n)(-C) — n i
Z .i= l l{ |X l/n-x|</i„}

We want to assess the asymptotic properties of

t e a  ( s a ~ ‘ l t|x./.- . |< ^ |n K X (i. l)a„ -  Xj&n) -  „(x)/n] \

V " V ESS )
l s a ~ ‘ l(ix,<.-.K>.p[(^i)A„ — Xa.) -  MiW

_  1 Tli n != l ^ { I X .^ - X ^ /ln lK ^ .+  UAn -ATiAn) ~ K X) / n ]

^ L x (x )

where fj.(x) is a bounded function. Define 

1  n a  [ n ‘ l _ 1
M { n ) ( t )  —  ^  l{ |X l/n-x |</in}[(^(t'+l)A n — ^«A„) ~  K x ) / n \

and
1  n a

m*+l =  —XiAn) — / * ( x ) / n l -

Hence,
["*1-1 

= ^  ' THi+l' 
i= 1

We denote by % /n the conditional expectation with respect to 3 y n =  <r(Xa;s < i/n). 

We know that C where 9f^n is the filtration generated by B„ with s < i/n . If 

under conditions on hn compatible with hn —» 0, nhn —► oo and nh \ —♦ 0 the following four 

expressions hold, namely
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MM
(A) 5 2  a^fnu+O  i  0

1 = 1

[ n t | - l

(B) 5 2  ai/.(">i+i) ■*•«(*)£*(<.*)
i= l

[ n t | - l

( o  5 2  3 i/» K + ii3 - o
i=i

[n il-1

(D) 5 1  ^i/nim+lbi+l) 0
1 = 1

where 'P(x) is a generic bounded function of x. then the sequence of processes (A/(nj (t), B(n) (f)), 

with A/(n)(t) defined as before and B(n)(£) = i>j+i with ^i+i = B ( ^ )  — B(±), con­

verges in distribution to the process (f7(f)«ir(x)z,(t,x)!-3(t)) where U{t) and B(t) are indepen­

dent Brownian motions. We start by verifying condition (A).

3 * / n ( m t + i )  <  | 9</ n ( n»i +i ) |

n k /-(*-t-l)/ri. r{i+l)/n
=  v ^ ^ l 1 ( |X , /w - x | < h « ^ < / n [  J  n { X, ) d a  +  J  (T(Xa) d Bs - t i ( x ) / n \ \

712 /*{*■*“ t ) /n
=  ( K X . )  -  Kx ) ) d a \

r(i+l)/n712 r u + l ) / n
~  M X s)  — fi(Xi/n))ds 4-

/•(»+!)/«
+ (piXi/n) -/i(ar))ds]|

J i / n

nk /•(*+!)/'» ,
— |l { |X l / n - i j < / i n l '^ t / n [ J  (f1 { X i / n ) \ X s — X i / n | -+- o(|Xs — Afj/n|))ds

W t+ D /n
+  /  (consL\Xi/n -  x\ + o(\Xi/n -  x|))ds]|

J i / n
i

-  COnSt- ~ f k f r \ 1 U X i/B - . |< A « } ^ / n [  SUp | X , - X i / n | ] - |  +
V ^ i r i n  4 < (« + l) /n  n

I
712 1

: l ^ { l - ^ « / n - * l< A n } ^ » / » [ ° (  SUP  l - ^ a  — ^ t / n l ) ~ ] |
\Z 2 n h n  i/n  a < ( i+ l ) /n  »*

712 / l  712 hn

We apply Burkholder-Davis-Gundy (BDG) inequality to the random quantity ̂ / n[supa<(i+i)/n |X3 

to obtain
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7l5 1 /•(*+l)/n t
%/n(rm+1) < c o n s t . - j = \ l [lXt/n_xl<kn}- % /n[ J  a2(Xa)ds] a|

I712 1
+const- V E 3 5 11" * '" -* ' <fc>,3v" [0(^ “ ?)/ J * '  ■■* ‘/”l)" 11

Summing up over i s and neglecting the smaller order of magnitude, we get

[ni ]- l  / -i \

9f*/n(»nt+i) < const. |  (n/in)1/2i  +

+const. f  ? _»=’ ^{|x,/w:«l<fcn}\  (/^ 3/2)
I 2vihn J

< const.Op(l) ( ^ 2  +  ^"3/2j

ytntl—1 ^
We have just used the result — 2̂ n *l</ln> = Op(l). This is proved in Florens-Zmirou

(1993).

Proposition (Florens-Zmirou (1993)) I f nh£ -* 0 and nhn —► oo as n —* oo, then

——----2nh^n   converges (in the L2 sense) to the local time Lx{t,x).

2 / \
We now verify condition (B). We add and subtract ——*■ to obtain

^ i/n(m i+ l) -  2 / ^ 1{lx */n-*l<An}3f»/n[(^(t+l)A„ -  ^»A„)2  ^  +

0 /*(X ) ( y  y  x ^ ( x )  fl2(x )- 2 — <*(«.,j i .  -  X,A.)  +  — —  +
i r ( i + l ) / n

-  2 s r1fljt-/--*i<‘->af/* [L  n x . - x t / M x j d s
A i + l ) /n  A i + l ) / n

+  /  2(Xa -  X i/nM Jf.JdB, +  /  (^ (X .)  -  ^ (x ) )* ]
•/i/n J i / n/ i / n  J i / n

+ l“ p l 2 ^ 9fVn1{|X,/n-x |<h„}(-X'(i+l)An ~  *iA „) +

, 1 /*2(*) . 1 , <r2(*)
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We examine the first term. By applying Cauchy-Schwartz (CS) inequality and BDG in­

equality and neglecting terms with smaller order of magnitude, we write

1 r ( i + l ) / n  r ( i + l ) / n
2j~ l{ |x i/B- . l<*.}»</»[J 2(Xa -  X iln)fj.(Xs)ds +  j  2(Xa -  X i/n)<r(X.)dB,

A i + l ) / n
+  / {(P{Xa) -  c2{x))ds\

Ji/n
1 /•(»+ U /n  r(*+l)/n

= J  2(Xa -  X i/n)n(Xa)ds +  J  (<r2(Xa) -  o2{x))ds\

i /•(i+ l)/n
i  o iflilJ r .,.—l<*->U23i/.[ sup |MX,)| <fa]2)l/2

a < (t+ l)/n  J i/n
#*(i+l)/n r(i+l)/n

+ (ct2(Xs) -  t?{X i/n))da +  /  (^ (X i/n) -  <r2(x))ds]
J i/n  J i/n

1 1 /•(*+!)/»
"  C0Mt* 2 ^ 1{|X.,n-«l<k.}-Oi/«[ J  ^ ( X SH ) 1/2

. 1 , *»
+C' 2K ,1{|̂ ./n-X|</l„} —

^   i ̂   ̂ l|</ln}< const. —= ------——--------1- const .hn----- — --------
yjn 2nhn 2nhn

Now we siim up over is  and the previous expression can be bounded by const. + 

hn)Op(l). The second term is

I n ^lAn)

,u(x) 1 r(*+l)/n
~  I- l2^ 1liX*/'n-x|<hn>^/n[ j . ^  fJ-{Xa)ds

r{i+\)/n
+ /  <r(Xs)d£s]

Ji/n
n(x) 1 H i+ l J /n

=  n~^2h ^^^Xi/n~x <̂hn^ i^ J i n V(Xa)ds]

<  const. ̂  2nhn ^ X x /n. * I < M ‘

Summing up over i s, we obtain

/i(x) 1 ^ _ l
5 Z J-flJfi/n-lKAni^i/n^i+DAn ~^iA „)

< const.—Op(l). 
n
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The third term is

and then,

1 P2ix ) 1 1
2 ^ 1{|*,/n-x |< M -^ 2 -  ^  const-n 2^ 1{lx' ^ - xl<hn}

1 ^  u2(x) 1
2JT 1 2  ^  c°nst.-O p( 1).

t=i
The fourth term is

Hence,

1 i ° 2ix ) _ _2,_x (  1 „ '\
Zhn 1{,̂ /n-*•<*-} n -  °  ^  [ 2 n h n 1 i ^ - ^ <^ J  '

M -i ^

1 2  2nh^1{lx'/n~xl<fln} ^ W L x iU x ) .

Thus,
[ n t | - l

12  1) -^0-2(x)I(t,x).
i= l

We now verify condition (C). By using previous results, it is easy to prove that

Hence,

[flf| r->[nt] -|

E f t  i ,3 .  . 1 2->i= I A{ |J f . /» - * l< M^ 9 t/„ K + l| < c o n s t . - ^ - j - ^ --------- — ---------

But —♦ 0 as n —♦ oo since nhn —► oo. Along the same lines, we prove that (D) holds.

Write

' ^ i / n ( r n i + l ^ i + l )  ^  |G t / n ( m 1+i6 j+ i ) |  —

x l^ » /n [ ( ( ^ ( t+ i )A n  - ^ ( 2 r ) / n ) ( B ( i + 1 )An - i ? i A „ ) ] |

— ^{l-Xi/n ~*l</»n} l^ t/n [(^ (i+ l)A a  ~  ) (-S(t-|-1) An — BtA„)ll

*'< M ' n ^ '/n(^(i+ l)A „ ~  ^«An)l*
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Since O f  C 3ff, the Brownian motion Bt is a martingale with respect to the filtration 

generated by {Xa;s < t} , hence ^ / n(5(i+i)A„ ~ BiAn) =  0. A simple application of CS 

inequality gives

x |(3 (/„(X,j+,)A„ -  - B iAJ 2)1/2I

From previous results we know that the order of magnitude of Sj/n(X(j+i)£n -  A,a„)2 is 

i» then

^j/n(mt-2-l^i+l) < const. y 9n^  ^

-  const-2^ 1i\x,fn-^<hn}-

Hence,

[n£| [n£| •.
< const.hlJ 2 {~ T  J|<hn}

U  i r  2nh*
< const.hl/2Op( 1)

and this last inequality verifies condition (D).

To conclude, if hn is such that as n —* oc, hn —* 0, nhn —► oc and nh\ —> 0, then 

conditions (A) through (C) guarantee that A/(„)(f) converges to a Brownian motion Ut with 

quadratic variation [C/]t = er2(x)L x(t,x). Further, condition (D) implies that Ua2̂ i ^ x) 

and Bt are independent Brownian motions. Then,

But this last expression gives

y/hn (£(«)(*)) ^  cr{x){Lx(t,x))-2N  (0,1)

and, so

/*(*)(*) = 0 p ( t ^ ) -
This proves the stated result.
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14.3. Proof o f Theorem 11.1

See Part I, Section 5, Theorem 5.1.

14.4. Proof o f Theorem 11.2

We write the estimation error as follows.

i = ( 2 r( r ,r ) - I P(r,r))
hn,T

nh ~ E K 1 ' ) — Lr(T,r)
n,T ,= i n,T

j h  f c  £ ' ^  U >) u ( T - a ) d a  -  U T -r ) )

+o.a.a. | ^3 /2 (A n r )2 
n,T

K (,) +  r ) )  U( T - +  T)dx< -  £' ( r ' r)]

+ ° a s  [ 73/2  ^ n . r ) 5
n.f J

We omit the stochastic order term since it is negligible in the limit under the assumptions 

made on the bandwidth parameter hn j .  Then,

K t  v - “
” ”  K ( , )  ( J ( h  - ,  +  r )  )  i r ( T '  K T 1  +  r ) d q -  i . ( T ,  r )

f i Z  ( / I KW + r)) i U T ' h^ “ + r)- i'(T’r)) '*’)

fe(£ ff2(hn,T9 + r)tr2{r)

[£ L K { q )  ( ^ 2(hn,r? +  r)) 27 ^ 1  ( M T ^  +  D - ^ r ) ) dq]
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The second term is negligible as n —► oo (and hn ^ —► 0). In fact.

J _ r  r k m  I +  \  ,  , r  a m
■/_„ K (,) (  «Hhn „  + r )^ ( r )  J LAT' r)dq]

1 r°° (  ccmst.h rQ \  —

5 ^ / 1 K(,) j U T ' r)dq] “ 0 when *■* -  °-

We now examine the first term

' £ > >  ( ^  + r>)  2T J T - (M f ' ‘ ' f , t r | ' H f ' r]) 4\  * /  “ W n»T*

We use Lemma 3.5 in Part I, Section 3.

Lemma [Limit theory  for th e  local tim e of a  diffusion] Let X  satisfy the properties 

in Assumption 2.1. Section 2, Part I. Let r and a be fixed real numbers and treat {L x(t,r+  

j )  — Lx{t,r)} as a double indexed stochastic process in (t ,a ). Then, as A —* oo

± J \{ L x ( t ,r  + j ) - L x ( t ,r ) } ± < B ( L x (t,r),a)

where S (t,a) is a standard Brownian sheet.

Then,

i S j T f t W  ( j ^ j )  2(Ir(T.r),,)<i,

42£ K(,)2,( ^ wT’r)',h
= 2 (Zr(T,r))l/2 j T  K (,

( Z . d V j ^ j T  K (q)B(q]dq  

=  4 ( ^ j )  (Lr(.T,r))'n N  (o, f i ° min(3,,)K (9)K(3)<4ld s \  

This proves the stated result.
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14.5. Proof of Theorem 11.3

We know that

Lr{T, r) — Lr(T,r)

provided jr^ (A nj;)Q =  0(1) for some a  e (0,5). Hence, a simple application of Slutsky’s 

theorem gives

# r(T, r) =  \ {TZ r) tJ t w Kt  =  itr(T, r).
/ r°° Lr(T, s)ds fr Lr{T,s)ds

We now study the asymptotic distribution. First, we examine the term Lr(t, s)ds.

J ^ L r ( T , s ) d s

- / T t E  / ° ° k ( 3 h * " )da
n  n . T  h n j

r ~ r iAn .T

1 = 1  

r f

)

-  6 (A"j)H) 
= f °  Z (f,a)da  + 0a.s. [ ^ ( A n>f) H ]

\ ' ‘n,r
The last equality derives from noticing that

r - a  r °  f 0 ( r a f i0 (h*+i )  for r  > a 
for r  < a

where the order of magnitude depends on the features of the kernel function [c.f. Part I, 

Section 4, Assumption 4.1]. Hence,

1 H r ( r , r ) - t f r (T\r)]

I r(T,r) Lr(?,r)
I r (T, s)ds /r ° °  ^r(T , s)ds

I r( T ,r ) - I r(T,r)
/ r° ° I r (r,s )d s  + 0^.(1)

since - — (An 7^2 e —» 0 as n —► 00
V r
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Then, by a simple application of Theorem 11.2 it follows that

L r ( T , r )  —  Lr (T , r )

/ h ^ \  f r°°Lr(T,s)ds

kLr(T, r) _=£ AMN ( o , (  ____
V (/r°° Lr(T , s)ds)

± A M N L ( ^ ^ m \
V W r ) /  Lr(T, r) J

where k = / 0°° /0°° min(s, q)K(s)K(g)dsdq. This proves the stated result.

14.6. P roof o f Theorem  11.4 

See Part I, Section 5, Theorem 5.5.

14.7. P roof of Theorem  11.5 

See Part I, Section 5, Theorem 5.6

14.8. P roof of Theorem  11.6 

See Part I, Section 5, Theorem 5.11

14.9. P roof o f Theorem  11.7 

See Part I, Section 5, Theorem 5.12

15. N otation

—*0.5. almost sure convergence
—*p convergence in probability
=>•, —*d weak convergence
:= definitional equality
op(l) tends to zero in probability
Op(l) bounded in probability
oa.s.(l) tends to zero almost surely
Oa.s. (1) bounded almost surely
=d distributional equivalence

asymptotically distributed as 
MN (0, V) mixed normal distribution with variance V  
1a indicator function for the set A
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Tcible 1. Summary of the features of the data set

Source B ank of A m erica 7-Day Eurodollar (m idpoint bid-ask)
Frequency Daily
Sample Period 1 June 1973-25 February 1995
Sample Size 5505 observations
Type Continuously compounded yield-to-maturity (annualized rate)

Tbble 2. Traditional descriptive statistics for the data set in Table 1

Spot In terest R ate F irst Differences
M ean 0.0836 -0.0000035
S tandard  Deviation 0.0355 0.004070
Daily p(1) 0.9936 -0.2710
p( 2) 0.9908 -0.0347
p( 3) 0.9883 -0.0377
P( 4) 0.9863 0.0297
P( 5) 0.9839 -0.1789
p( 10) 0.9779 -0.0173

Monthly autocorrelations are reported in Alt-Sahalia (1996a,b)

94

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Table 3. Summary of the results of two nonstationarity tests for the series in Table 
1. We implement the augmented Dickey-Fuller test (ADF) and the Z tests in Phillips 
(1987). We consider a constant and a trend in the fitted regression.

C onstant and  tren d  in the  fitted  regression
Auto parameter Test statistic 1% value 5% value 10% value

ADF test 0.9963 -2.3447 -3.9978 -3.4318 -3.1617

Z(a) test 0.9923 -19.4572 -28.9388 -21.2162 -17.9117

Z(t) test 0.9923 -3.1383 -3.9978 -3.4318 -3.1617

Automatic window width

Z(a) test 0.9923 -21.0867 -28.9388 -21.2162 -17.9117

Z(t) test 0.9923 -3.2655 -3.9978 -3.4318 -3.1617

Note: In the ADF test the number of lagged first differences in the fitted regression 
is equal to 5. In the Z(a) and Z(t) tests the number of autocovariance terms to 
compute the spectrum at frequency zero is equal to 5.

95

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Table 4. Summary of the results of two nonstationarity tests for the series in Table 
1. We implement the augmented Dickey-Fuller test (ADF) and the Z tests in Phillips 
(1987). We consider a constant in the fitted regression.

Constant in the  fitted  regression
Auto parameter Test statistic 1% value 5% value 10% value

ADF test 0.997 -2.0918 -3.4583 -2.8710 -2.5936

Z(a) test 0.9935 -16.2600 -19.8270 -13.7251 -11.0755
! |

—  . . .  —

Z(t) test 0.9935 -2.8608 -3.4583 -2.8710 -2.5936

Automatic window width

Z(a) test 0.9935 -17.6300 -19.8270 -13.7251 -11.0755

Z(t) test 0.9935 -2.9781 -3.4583 -2.8710 -2.5936

Note: In the ADF test the number of lagged first differences in the fitted regression 
is equal to 5. In the Z(a) and Z(t) tests the number of autocovariance terms to 
compute the spectrum at frequency zero is equal to 5.
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Table 5. We estimate a linear mean-reverting model for the drift in the CEV class 
as in Chan, Karolyi, Longstaff and Sanders (1992). We impose various restrictions 
on the parameters (bold figures) to obtain conventional parametric models for the 
short-term interest rate process.

a(0) a(l) 7(0)“ 7(1) #  ' d.f.
M odel

U nrestricted  CEV 0.1320 -1.5918 4.1295 1.49
(0.0494) (0.6981) (2.0264) (0.1095)

1" '  '  ' - -  r  - ] i! 1 i
C IR 0.0776 -0.8549 0.0323 0.5 38.37 1

(0.0488) (0.6901) (0.0023) [5.83e—0.10]

Vasicek 0.0621 -0.6614 0.0021 0 59 1
(0.0488) (0.6903) (0.0001) [1.5e—0.14]

|
R estric ted  CEV 0 0.2375 3.3289 1.44 6.98 1

(0.1340) (1.7105) (0.113) [0.0082]

B rennan and Schwartz 0.1035 -1.1919 0.4136 1 14.27 1
(0.0489) (0.6911) (0.0279) [0.000158]

Notes: The parameters are estimated by GMM [we follow CKLS (1992) in the 
implementation, see text]. Standard deviations are in parentheses. The results of 
Hansen’s (1982) test of overidentifying restrictions are reported. P-values are in 
squared brackets.
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Figure 1: Graph of the series.
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Figure 2: Graph of the first differences of the series.
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Figure 3: Functional estimates of the local time process.
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Figure 4: Functional estimates of the hazard process.
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Figure 5: Functional estimates of drift and diffusion function.
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Figure 6: Comparison between the functional estimates and a parametric linear mean- 
reverting model for the drift in the CEV class as in Chan, Karolyi, Longstaff and 
Sanders (1992).
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Figure 7: Comparison between the functional drift and a linear mean-reverting drift 
as in Chan, Karolyi, Longstaff and Sanders (1992).
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Part III

Fully Nonparametric Estimators for 
Diffusion Models: a Small Sample
Analysis [with Thong H. Nguyen]

16. Introduction

Stochastic differential equations play an important role in modeling economic time series. 

They are largely used in continuous-time finance, for example. Unfortunately, even in 

finance and for many processes of interest, relatively little is known about how to correctly 

parametrize the functions that describe the solution to the stochastic differential equation 

of interest, that is the infinitesimal first and second moments [ n(.) and cr(.) in (17.1) below]. 

This issue has led many researchers to design estimation methods that do not rely on the 

necessity of imposing a parametric structure up front.

Fully functional estimation procedures have been recently proposed by Jiang and Knight 

(1997) [JK, henceforth), Stanton (1997) and Bandi and Phillips [BP, hereafter) (c.f. proce­

dure in Part I).30 While their limiting properties have been discussed at length [c.f. Florens- 

Zmirou (1993), JK (1997), Bandi (1999) and Part I in this thesis), no work has been done 

on the analysis of their performance in finite sample.31 We believe this issue is particularly 

important due to the widespread use of continuous-time modeling in economics, and espe­

cially in finance. In consequence, the goal of the present chapter is to investigate the finite 

sample properties of the above-mentioned estimators in the presence of several simulated 

underlying processes.

We address she main questions.

[1) How well alternative methods capture the main features of the functions of interest, 

that is drift and diffusion [i.e. analysis of the small sample bias]?

[2) How volatile are the finite sample estimates?

[3) How well the asymptotic theories approximate the finite sample distributions?

[4) How important is the choice of the kernel?

30 In this chapter, the definitions “the BP estimators” and "‘the estimators in Part I” are used
interchangeably.

31 In a recent paper, Jiang and Knight (1997) compare their functional approach to existing parametric 
methods in the literature.
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[5] How important is the choice of the bandwidth(s)?

[6] How crucial are some of the statistical properties of the underlying processes, such as 

stationarity and temporal persistence?

The main results of our analysis can be briefly outlined as follows.

We confirm that the infinitesimal volatility of a process is easier to identify than the 

infinitesimal first moment in finite sample. Furthermore, we stress that identification of the 

drift is intimately related to the appropriate choice of the bandwidth parameter(s). We know 

that for estimators that are robust to deviations from stationarity [c.f Stanton (1997) and 

Part I ], the admissible bandwidth for diffusion estimation can be theoretically smaller than 

the admissible bandwidth for drift estimation [c.f. Bandi (1999) and Part I for discussions]. 

The reason is that local information suffices for consistent estimation of the diffusion but 

is not sufficient for consistent estimation of the drift [c.f. Alt-Sahalia (1996a) and Part I, 

for instance]. This reality is confirmed by our simulations. Consistently with Bandi (1999), 

we point out that an appropriately chosen, larger (than for diffusion estimation) window 

width for the drift generally would not determine oversmoothing. Rather, it would help 

capture the salient features of the infinitesimal first moment of the underlying process. In 

effect, for most of the processes examined in this chapter [i.e. non explosive and persistent 

processes], we expect the drift to be fairly smooth and quite fiat. This, in turn, implies that 

the extent of the estimated nonlinearities in the finance literature on the estimation of the 

short-term interest rate process [c.f. Stanton (1997), for instance] can be partly induced 

by erroneous choices of the smoothing parameter(s) causing undersmoothing [c.f. Bandi 

(1999) for a discussion of this point]. In effect, nonexplosion and persistence are typical 

features of US interest rate data. Undersmoothing can then be invoked as a explanation 

for the estimated nonlinearities that complements alternative theories in the literature [c.f. 

Jones (1997), Chapman and Pearson (1998) and Part II in this work].

Theoretically, the drift estimation of processes which revert towards the middle of their 

stationary distribution at a fast pace [low persistence processes] requires optimal bandwidths 

whose magnitude is close to the optimal magnitude in the case of diffusion estimation. 

Below, we discuss the technical reasons for this result. A simple intuition is sufficient here. 

Processes whose speed of return to the long run mean is fast, display a fairly steep, negatively 

sloped drift function. Excessively large bandwidths can oversmooth the drift in this case and 

introduce too much bias. This observation implies that a window width for the drift that
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is roughly as large as (or slightly larger than) the one used for diffusion estimation can be 

justifiable in the presence of low persistence. For highly persistent processes a substantially 

larger smoothing parameter is needed due to the flat nature of the infinitesimal first moment 

across points in the range of the process.

Being the drift estimator proposed by JK (1997) intimately related to the estimation 

of the marginal density of the process and the diffusion function, the theoretical require­

ments on the underlying process that are needed for this method to be well defined (i.e. 

stationarity) are tighter than in Stanton (1997) and BP. In the presence of stationarity, this 

estimator tends to underperform slightly the alternative methods analyzed here for com­

parable choices of the window widths. On the other hand, it does not lead to excessively 

misleading inference when stationarity is not satisfied.

The potential need for a larger smoothing parameter for the drift when straight sample 

analogues to conditional expectations are used as in Stanton (1997) and BP lies at the heart 

of the potential trade-off between optimal bandwidth for the drift and optimal bandwidth 

for the diffusion coefficient. An excessively large window width might oversmooth the 

diffusion but be suitable for the drift. Unfortunately, the asymptotic condition that the 

admissible smoothing parameter for the drift needs to satisfy depends on the stochastic 

properties of the underlying continuous-time process, through its chronological local time. 

This is a random quantity that provides an assessment of the time that the process spends 

in the vicinity of every spatial point [c.f. Phillips and Park (1998), Part I and Part II. for 

example). In particular, the rate of convergence to zero of the window width depends on the 

rate of divergence to infinity of the local time of the process. The later can not be assessed 

in closed form apart from few specific processes, such as Brownian motion [c.f. Part I). This 

implies a fundamental difficulty in choosing the correct smoothing parameter for the drift. 

The same difficulty does not occur when estimating the diffusion function. Volatility can 

be identified locally. Hence, the stochastic properties of the process do not play a vital role.

Interestingly, though, the implementation of estimation procedures based on double­

smoothing as in Part I seems to improve the above mentioned trade-off, thus making the 

need for finding the correct window width for the drift less compelling. The idea is very 

simple. Sample analogues to conditional expectations based on convoluted kernel functions 

can achieve in finite sample the level of smoothing for the drift that weighted averages 

based on simple kernels would guarantee with relatively more appropriate choices of the 

bandwidth. Of course, double-smoothing might impose a cost in terms of oversmoothed
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second moments, but our finite sample analysis suggests that the benefit outweighs the cost 

considerably.

Finally, the asymptotic theories generally reproduce quite accurately the characteristics 

of the finite sample distributions. Even though a bias can be present, small sample distri­

butions are sufficiently close to normals with variances that are numerically similar to the 

variances that the limit theories predict, mainly at spatial points that are often visited by 

the sample process. As expected, the larger is the number of observations at a point, the 

smaller is the bias of the estimated drift and diffusion function at that point and the closer 

is the finite sample distribution to its asymptotic counterpart. This result generally holds 

across estimators and underlying processes.

This chapter is organized as follows. Section 17 discusses two alternative assumptions 

on the underlying continuous-time process. The asymptotic features of the estimators that 

we examine in this work depend on the validity of either one of these two assumptions. 

In Section 18 we describe the estimators in JK (1997) and Stanton (1997) and provide 

an outline of their limiting properties. Section 19 illustrates five simulated process. We 

simulate processes that have been, or could be, employed as descriptions of the short­

term interest rate process in continuous-time finance. This will allow us to comment on 

the practical implications of our findings and relate our results to previous results on the 

empirical estimation of diffusions. In Section 20 we discuss the simulation exercises. Section 

21 concludes. Proofs are in Section 22. Notation is in Section 23.

17. T he m odel

As in Part I, we consider the process {Jf£; t > 0} that is the solution to the homogeneous 

stochastic differential equation (SDE)

dXt =  fJL(Xt)dt + a(X t)dBt, (17.1)

with initial condition X q = X . Bt is a standard Brownian motion defined on the filtered 

probability space (fi, 3 ^ ,( 3 f ) t>o,P). The initial condition X  6 L2 and is taken to be 

independent of {Bt : t > 0}. We define the left-continuous filtration

:=  (t{X) V =  <t{X,Ba;0 < s < t)  0 < f < oo

and the collection of null sets
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We create the augmented filtration

5 *  := o-(3ft UK) 0 < t <  oo.

We impose Assumption 17.1 and Assumption 17.2, below, in the study of (17.1). Both 

Assumption 17.1 and Assumption 17.2 ensure the existence and pathwise uniqueness of a 

nonexplosive solution to (17.1) that is adapted to the augmented filtration {3^}. Assump­

tion 17.2 guarantees stationarity by ensuring the existence of a time-invariant stationary 

distribution for the process {Xt;t >0} and by making the process start out in the stationary 

distribution.

Assum ption 17.1

(A) p(-) and cr(-) are time-homogeneous, 93-measurable functions on D =  (/, u) with -oo < 

I < u <oo where 03 is the a-field generated by Borel sets on 3D. Both functions are at 

least once continuously differentiable. Hence, they satisfy local Lipschitz and growth 

conditions. Thus, for every compact subset J  — [1/H,H] with H > 0 of the range of 

the process, there exist constants C\ and C<i such that, for all x  and y in J,

\p(x) -  p(y)| +  \ff(x) -  <r{y)\ < Ct |x -  y\,

and

|/i(x)| +  |<r(x)| < C 2{l + |x|}.

(B) cr2^) > 0 on 15.

(C) [Feller’s (1952) necessary and sufficient condition for nonexplosionj. We define V(a ) 

as
r<* rv r o

dx}dy
S'{x)a2(x)

where S'(x) is the first derivative o f the natural scale measure,

2Mf)
2(x)

dx}dy.
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We require V(a) to diverge at the boundaries of 3 D ,  i.e.

lim V(a) = lim V(a) =  oo.
a—»/+ a—»u-

As discussed in Part I, under Assumption 17.1 the stochastic differential equation has 

a strong solution Xt that is unique, recurrent and continuous in t € [0,T]. X t satisfies

X t =  X  +  I '  fj.(X3)ds +  f  cr(Xa)dB3 
Jo Jo

a.s., with E[Xt]dt < oo.

Assumption 17.2

(A’) is defined as (A) above.

(B*) is defined as (B) above.

(C’) Let M(a), the speed measure, defined as

converge at both boundaries of 3 D .  Further, let S ( c t ) ,  the natural scale measure defined in 

Assumption 17.1 (C), diverge at both boundaries of 3 D .

(D*) Xq is distributed as itq, the time-invariant density of the process.

17.3 Remark (C ) imposes a structure on the solution to the stochastic differential equa­

tion which is substantially different from the structure determined by (C). The condition 

on the speed measure guarantees the existence of a time-invariant marginal density for X t. 

Under Assumption 17.1 the process might not have a stationary distribution function. Fur­

ther, contrary to the conditions on V(a) that are necessary and sufficient for nonexplosion, 

the conditions on the natural scale measure are only sufficient for nonexplosion. In fact, 

the following implications can be easily derived [c.f. Karatzas and Shreve (1991, Problem 

5.5.27, page 348)]:

S(l+) = —oo => V(l+) = oo 
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and

S ( u  ) =  +00 => V(u ) =  00.

Under Assumption 17.2, the stochastic differential equation has a strong solution X t 

that is unique, stationary, recurrent and continuous in t € [0,T\ [c.f. Ai’t-Sahalia (1996a,b) 

for a discussion]. Xt satisfies

Xt = X  +  T n(Xs)ds +  f  a(Xa)dBs 
Jo Jo

a.s., with E[X?]dt < 00.

17.1. The objects of interest

We are interested in the functions p(.) and <r2(.) in (17.1) above. They represent the first 

and the second moment of the infinitesimal conditional distribution of X t. More specifically,

E {X t+k -  X t\Xt} =  n(X t)h + o(h) (17.2)

and

E {(X t+h -  X t? \X t ) =  <?(Xt)h +  o(h) (17.3)

where h is an arbitrarily small time step and o(l) is a standard order symbol such that o(h) 

denotes a function converging to zero at a faster rate than h.

The functions /i(.) and <r2(.) drive the dynamics of the solution to the SDE (17.1) 

since the transition density is written as a function of both fi(.) and <r2(.). In fact, the 

transition density n(Xt =  x \Xq =  xo) is the unique solution to both the Kolmogorov 

backward equation,

d7t(Xt =  x |Al0 = xo) , r(Xt = x\X0 =  x0) , 1 2, ^&*(.Xt =  x\X0 = x0) ^
 « ----------- — + r (io)— ¥ 7 0—  (17-4)

and the Kolmogorov forward (or Fokker-Plank) equation,

dir(Xt =  x|X0 =  x q )  _  d(fi(x)ir(Xt = x|Al0 =  x0)) 1 ^ ( ^ ( x ^ X t  =  x\X Q =  x0))
dt dx  +  2 a2x

(17.5)

with initial condition tt(Xq =  x \Xq =  xo) =  6(x — xo) where 6 is the Dirac delta function.

I l l
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17.4 R em ark A heuristic derivation of the Kolmogorov backward equation is instructive 

and can be easily laid out. We follow Chang (1999). Let the function $(xo, t) be JET10[f(X t)\. 

We can write

<&(x0 ,t  +  h) =  E*>f(Xt+h) =  Ex'>Ex°[f(X t+h)\Xh\ =

Hence,

d$(xQ, t) 
dt lim -[$(xo,£ + h )~  ^(xo,t)]h—0 rl

l i m i [ £ * 0$ ( ^ , t ) - < & ( x o , t ) ]
/i—o ft

l «PXOr d * ( a?0 , i ) , v. _ x . l& $ (x o ,t ) ,v  _ , 2 _ _/LU
i 3 s £  * o) 2 8»io (**-■'»>

d$(x0, Q 
<9x0

d2$(xp,t)
d2xQ (17.6)

If xo = Xt, then

d f m
dt

E[f{Xt+h)\Xt\ -  f{ X t)=  lim
h—o h

^ a.vt 2  ̂ '

where A is the infinitesimal generator associated with the strong Markov process {X t; t > 0}. 

We will refer to this important concept later on. Suppose now that the function f ( X t) is

equal to l{Xi < y} for a fixed y. Then,

$(x0,f) =  E * f ( X t) =  P*°{Xt < y }=  F(t,xo,y)

where F(t,xo,y) is the conditional cumulative distribution function of Xt at y. F(£,xo,y) 

can be plugged into (17.6). We can subsequently differentiate both sides with respect to y

and obtain the required result, that is equation (17.4).

Under Assumption 17.2 the solution to the SDE (17.1) is a stationary process. Drift 

and diffusion function completely describe the time-invariant stationary distribution of the 

process which is given by
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M x ) = ( i7 -8)

The choice of the lower bound of integration x* in the interior of S  is irrelevant. It only 

affects the choice of the constant C3 which is determined to guarantee that the density 

integrates to one.

Formula (17.8) can be derived from the forward Kolmogorov equation (17.5) [c.f. Karlin 

and Taylor (1981, 15.6.22)]. It implies that

and

9 f Xt
<r*(Xt) =  J  ii(u)n(u)du. (17.10)

It is worth emphasizing that the assumption of stationarity (Assumption 17.2 above) deter­

mines the possibility of expressing either one of the two objects of interest as a function of 

the time-invariant distribution of the process and the other function. This is of substantial 

help if we are interested in estimating continuous systems by use of discretely sampled data 

[c.f. discussion in Part II, Section 10]. We will return to this issue later on.

More general expressions for fi(.) and <r2(.) which are valid for stationary and nonsta- 

tionary processes can be easily derived from (17.2) and (17.3), namely

fi(X t) =  Um]-E{Xt+k^X t\X t}  (17.11)h—0 ft

and

o*{Xt) =  lim i£ { (X t+h -  X t)2\Xt}. (17.12)/l—*0 ft

18. N onparam etric estim ators

This section is devoted to the discussion of the fully nonparametric estimators for drift and 

diffusion function in JK (1997) and Stanton (1997). As for the BP estimators, we refer the 

reader to the discussions in Part I and Part n . As a caveat, we will not dwell on asymptotic 

results since they are readily available elsewhere [c.f. Florens-Zmirou (1993), Jiang and 

Knight (1997) and Bandi (1999)]. We will simply provide a brief illustration of them and
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refer to the relevant theorems in the original papers.32 Further, we will comment on the 

features of the estimators that are relevant for a complete understanding of their finite 

sample properties.

The symbols below have the usual interpretation in standard nonparametric analysis, 

that is K(.) is a smooth kernel function and h is a bandwidth controlling the amount of 

smoothing [c.f. HSrdle (1990)]. We impose Assumption 4.1 in Part I, Section 4, on the 

kernel function.

18.1. Jiang  and K night (1997)

We assume that we observe X t at {t = t i , t2,..,tn) in the fixed time interval [0,T], with 

T > To > 0, where To is a positive constant. We also assume equispaced data. So, {Xt = 

^ A „ ,^ 2An<^3A„>-”iAfnA„} are n observations at {ri =  An,£2 =  2An,£3 =  3An, ...,£„ = 

nA„}, where An = T /n. The diffusion function estimator is defined as

g2 i s r . 1 -  w

s r . K ( * t = * )  ' ( 1

From (17.9), the functional drift estimator is

dx  (n) Jr(B)(ar)
(18.2)

where 7?(n)(x) = ^  5Z"=1 K (: J ) is an estimate of the stationary distribution of the

process.

18.1 Rem ark The intuition behind (18.1) and (18.2) is simple. The diffusion function has 

a lower order of magnitude than the drift function for infinitesimal time changes. Hence, the 

local dynamics of the underlying process reflect more of the characteristics of the diffusion 

than those of the drift. In consequence, the diffusion function can be estimated consistently 

over a fixed time span provided the observation frequency is high, even in situations where 

the drift is treated as a nuisance parameter [as in (17.12) and its sample analog (18.1)]. This 

idea is contained in a paper by Florens-Zmirou (1993) where (18.1) is originally suggested 

with K(.) being replaced by a discontinuous indicator function.

12 For completeness and clarity, though, Section 22 reports the proofs of the theorems contained in the
unpublished paper by Bandi (1999).
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The drift term can not be estimated, over a fixed time span unless cross-restrictions 

relying on the knowledge of the time-invariant density of the process are imposed [c.f. Alt- 

Sahalia (1996a), JK (1997), Part I and Part n , for instance]. Assumption 17.2 needs to 

hold to be able to construct the drift estimator based on (17.9). In fact, under Assumption

17.2, formula (18.2) defines a consistent estimator of the true theoretical function (17.9) 

[which, in turn, is equal to (17.11)].

Limit theory for the diffusion function estimator [c.f. Bandi (1999, Theorem 2)]

Provided n —► oo [the number of observations increases over a fixed time span], hn —* 0 

and n l~£h \  —* oo with e arbitrarily small, the estimator is consistent almost surely. If 

nh* —> 0,33 then we have convergence to a mixture of normal law ( M N ), depending on the 

chronological local time of the underlying process [see Part I  and Part II], i.e.

(3»n)(x) -  A x ) )  i  M N  (o, 4 K » ( .)* )  '

where Lx (T.x) =  ^  lim€_ 0 J j f  1 {x<x+e[(Xa)d[X\s-

The conditions on the bandwidth can be easily rewritten. If hn o c  n~k, then k €  ( 5 ,  5 )  

for consistency and weak convergence.

Consistency of the drift is proved in JK (1997, Corollary to Theorem 2, page 627) by 

virtue of Slutsky’s theorem and provided the estimators of the marginal density function and 

its first derivative are consistent for the theoretical functions, but this is a standard result 

in nonparametric statistics [see Silverman (1986) for a general discussion and Al’t-Sahalia 

(1996a,b) for empirical applications in finance]. In effect, if nhn —> 00 and n/13 —* 0, then the 

distribution function estimator is consistent for the true function and asymptotically normal. 

The conditions that ensure consistency and asymptotic normality of the estimator of the 

first derivative of the marginal density function are nfi3 —» 00 and nh„ —* 0. The above 

assumptions can be rewritten in the form hn a  n~k with k € (5 ,1) for the marginal density 

estimator and k  6 (^, | )  for the estimator of the first derivative of the distribution function 

[c.f. Jiang (1998)]. Weak convergence of the drift estimator to a Gaussian distribution 

follows from applying the delta method to (18.2)

J3If n/£ —► 0 0 , then weak convergence still holds, but the limiting distribution of the diffusion function 
estimator is driven by the bias term in the estimation error decomposition [c.f. Bandi (1999, Theorem 2)].
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18.2. Stanton (1997)

Xt is recorded at {t =  ti, t%,.., tn} in the time interval [0, T], with T  > Tq > 0, where To is 

a positive constant. We assume equispaced data. Hence,

are n observations at

{f i =  A nj ,  ti =  2An(r ,  tz = 3An,T, tn = nAn, r }

where A n^  =  T/n. The diffusion function estimator is

)[^(i+l)A ,
(18.3)

The drift function estimator is

)p f(i+ l)A n,
(18.4)

18.2 Remark Stanton’s approach is presented in the original paper [Stanton (1997)] as

a methodology based on approximations to the true functions. The approximations can 

be made finer and finer using the infinitesimal generator of the process (17.7). As already 

commonplace in the finance literature, we will only analyze the performance of estimates of 

the first order approximations, that is (18.3) and (18.4) above. Theoretically, it is entirely 

appropriate to restrict ourselves to the first order approximations since they are proven to 

be consistent for the true functions and have nice asymptotic properties as T  —>• oo. n —* oo

18.3 Remark As in Part I, Bandi (1999) derives the limit theory assuming that the 

time span becomes larger (i.e. long span asymptotics) as the distance between adjacent 

observations decreases (i.e. infill asymptotics). The implementation of infill asymptotics 

is necessary to estimate consistently continuous processes using fully functional methods.

to impose stationarity on the underlying process [c.f. Remark 18.1 above, and Part II for a 

discussion]. All that is needed to identify the drift is to assume that the process is recurrent,

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.

and £ —*■ 0 [c.f. Bandi (1999)].

Enlarging the time span is crucial to be able to identify the drift while avoiding the need
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as it is given Assumption 17.1. Note that (18.4) is defined as a straight sample analogue to 

(17.11). Since the theoretical drift is simply a conditional expectation, we wish to be able 

to visit the conditioning level [or an arbitrarily small neighborhood of it] a large number 

of times over time [in the limit an infinite number of times] and recurrence ensures that 

this holds asymptotically almost surely. Clearly, the recurrence of the process can not be 

exploited over a fixed time span (T). Hence, recurrence is not a necessary condition for 

diffusion estimation since the diffusion function can be identified over a fixed time span 

provided the number of observations increases [technically, the infinitesimal volatility is 

part of the quadratic variation of the process and the quadratic variation is defined over a 

fixed time span].

18.4 Remark Note that the BP estimators in Part I can be regarded as the product of a 

general approach to the functional estimation cf diffusions that encompasses specifications 

based on simple smoothing of which the Stanton’s approach is an example. The relative 

merits of double-smoothing in finite sample will be one of the objects of our investigation.

The details of the asymptotic results are contained in Bandi (1999). We provide a 

concise illustration here and report proofs in Section 22.

Limit theory for the diffusion function estimator [Bandi (1999, Theorem 2)] If

n —* oo, T  —*oo, hnyT —* 0 (as n ,T  —* oo) such that —* 0 and nj^~~(A n,r)“ =  

Oa.a.(l) for some a  6 (0, 5), than the estimator (18.3) is consistent almost surely for the 

true Junction. Further, i f  —* O34 and h n ^L x iT ,!)  ^  0, then

In the fixed T  case, the conditions on the bandwidth reduce to hn oc n k with k 6 ( j,  j).

Limit theory for the drift function estimator [Bandi (1999, Theorem 1)] If n —*

oo, T  —► oo, hntT —» 0 (as n ,T  —> oo) such that —* 0 and (An,r)Q =  0 a.5.(l) for

34 The usual caveat applies in the case —► oo.
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some a E (0 , 5 ), than the estimator (18A) is consistent almost surely for the true function 

:provided h n ^L x iT .x )  00. Also,

\jLx(T ,x)hn 'T (ji{nT](x) - n(x)) M N  ^0, K2(s)ds^ <r2(x)^ .

18.5 Remark The comments that we made earlier on the BP estimators [c.f. Part I and 

II] readily extend to (18.3) and (18.4) with c„,r being replaced by hnj .  More explicitly:

[1] The rate of convergence of the diffusion function estimator ( \J Lx^ ^ ;T) is faster 

than the rate of convergence of the drift estimator [yjLx(T,x)hntT).

[21 In the case of diffusion estimation, the admissible bandwidth hn T can converge to zero 

at a faster pace that in the case of drift estimation. In fact, when estimating the drift, 

the condition Lx(T,x)hn<T ^  00 imposes a tight requirement on the sequence hnj- 

Furthermore, since the diffusion function can be identified in every neighborhood, it 

is straightforward to find closed form solutions for the admissible bandwidths [c.f. 

discussion above with T  = T]. Being the rate of divergence of the local time factor 

related to the characteristics of the underlying process, the same possibility is ruled 

out in the drift case. Then, small sample analysis can be particularly useful to find 

informal guidelines to choose the relevant window widths [c.f. Subsection 20.1 below].

[3] The features of the limiting distributions clarify the sense in which enlarging the time 

span is necessary only to estimate the drift. If T  were fixed, than T x{T ,x) — Op(l) 

and (18.4) would diverge at a speed equal to [c.f. Theorem 10.1 in Part II].

Later we will comment on the ability of the asymptotic theory to capture the salient 

features of the small sample distributions.

18.6 Remark Note that if we use the same kernel functions and the same bandwidths, 

the diffusion function estimators in Stanton (1997) and JK (1997) deliver the same outcome 

in finite sample. In consequence, we will discuss only one estimated curve in what follows.

18.3. A final observation on the functional estimates

Since the diffusion function can be identified over a fixed time span, Assumptions 17.1 

and 17.2 are excessively stringent. The diffusion function estimators considered in this
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chapter and in Part I maintain their limiting properties, even if the Feller’s condition for 

nonexplosion does not hold. In other words, the instantaneous volatility of a transient 

process can be estimated consistently using the apparatus described above. As far as the 

drift is concerned, Assumption 17.1 (i.e. recurrence) is necessary for consistency of the 

estimators in BP and Stanton (1997), whereas Assumption 17.2. (i.e. stationarity) is 

necessary for the estimator in JK (1997) to be well defined.

19. T he sim ulated processes

In this section we discuss the choice of the simulated processes. We simulate processes 

that have been, or might be, used as descriptions of the short-term interest rate process 

in continuous-time finance. Our aim is to verify the finite sample properties of the BP 

estimators and of the estimators outlined above in the presence of underlying series that 

display various statistical properties. In fact, we consider processes that satisfy either 

Assumption 17.1 or Assumption 17.2 above. Their infinitesimal first and second moments 

are parametrized as either linear or nonlinear functions. We specify parameter values that 

are coherent with recent results in the finance literature on the estimation of the short-term 

interest rate process [see Alt-Sahalia (1996a,b) and Part II, inter alia, for discussions]. The 

initial value is set equal to 0.067. The distance between observations At is set equal to 

1/250, that is we simulate daily observations.

19.1. Brownian motion [linear, nonstationary and recurrent process]

We start with the simplest nonstationary continuous-time process satisfying Assumption

17.1. We will be interested in evaluating how well methods robust to deviations from sta­

tionarity, that is Stanton’s (1997) and BP’s, capture the features of the theoretical functions. 

In this case,

=  0 and <t2(.) =  a2 =  constant

Then,

dXt =  crdBt (19.1)

where {Bt;t > 0} is a standard Brownian motion. The process can be simulated easily 

because the transitional density is known, i.e.
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7r(Xt+i = Xi+i|Xt = xt) = 1 ___f (Xt+l -  Xt)2'
y/Tlra^S't 2<r2A t

We set <72 equal to 0.002.

19.2. Vasicek (1977) [linear, stationary and recurrent process]

The drift is specified as a linear mean-reverting function, i.e.

dXt =  k(8 — Xt)dt 4- (rdBt (19.2)

with 9 corresponding to the long-run mean of the process and k corresponding to the speed 

of reversion to the long run mean. The solution to (19.2) satisfies Assumption 17.2 (A )- 

(C ) provided k > 0. If k > 0, than the stationary marginal distribution is normal with 

unconditional mean 9 and variance The parameter k determines the persistence of

the process by controlling the rate at which Xt reverts toward the unconditional mean. 

Lowering the value of k increases persistence because it slows the rate of mean reversion, 

which increases the correlation between observations. Usually, higher persistence negatively 

affects inference [c.f. Pritsker (1998) and Chapman and Pearson (1998)]. We will verify this 

result.

As in the Brownian motion case, the process is easy to simulate since the transitional 

density is known. In fact,

We consider two different experiments. The second set of parameter values corresponds 

to an increase in persistence [k 1] that does not affect the second moment of the stationary

(ii) k =  0.214592, 8 =  0.089102, a2 =  0.000546.

The values are taken from Pritsker (1998) and are consistent with the estimated first and 

second moments of the short-term interest rate data used in Ait-Sahalia (1996a,b).

7r ( A ’t + i  — i t + i l - X t  — x t ) —
>/27tt*(At)

where s2(At) =  fjj[l - e  2"Ae].

distribution of the process [a2 1 to keep constant as k 1]. We set

(*) k =  0.85837, 9 = 0.089102, a2 =  0.0021854

and
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19.3. Cox-Ingersoll-Ross (1985) [affine, stationary and recurrent process]

The drift is linear mean-reverting as in Vasicek (1977) and the diffusion function depends 

linearly on the underlying process, i.e.

dXt — k(9 — X t)dt +  a>JXtdBt. (19.3)

The parameters have the usual interpretation [c.f. Vasicek (1977)]. The process satisfies 

Assumption 17.2 (A’)-(C’) if k > 0 and 2k9 > a2. Under this assumption, the stationary 

marginal distribution is gamma with unconditional mean 9 and variance i.e.

*(x ) =  exp(-G7ar)

where tn = u =  ^  and T(.) is the gamma function. The transitional density is 

noncentral chi-square,

(
V \  ?/2 ,
- J  Iq(2\/wv)

where

_  2k

C cr2[l — exp(—«(At)] ’ 
u = cxt exp(-«(At)),

v =  cxt+1,
2k9 — a2

i  •

and Iq is the modified Bessel function of the first kind of order q. The degrees of freedom are 

2q 4- 2 and the noncentrality parameter is 2u. As usual, the knowledge of the transitional 

density permits to simulate the process in a straightforward fashion.

We consider two different experiments. As in the Vasicek case, the second set of para­

meter values corresponds to an increase in persistence [k |j  that does not affect the second 

moment of the stationary distribution of the process [a2 j. to keep ^  constant as k [J. 

Specifically,

(i) k =  0.85837, 9 = 0.085711, a  ~  0.15660

and
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(if) k =  0.214592, Q =  0.085711, <r =  0.07830.

The values are taken from Chapman and Pearson (1998) and are (approximately) consistent 

with the estimated first and second moments of the data set used in Al't-Sahalia (1996a,b). 

Notice that in this model [and in Vasicek (1977)], the autocorrelation can be expressed as

Carr[Xt+b.t,X t\ =exp(-/cA t).

As Chapman and Pearson (1998, Subsection 3.1, page 11) point out, a k equal to 0.85837 

implies a first-order monthly autocorrelation coefficient which is equal to that of the Eu­

rodollar data in Al't-Sahalia (1996a,b), i.e. % 0.938. The second value, k  = 0.214592 that 

is, implies a monthly autocorrelation of 0.982, which is consistent with the upper end of the 

estimated values for US interest rate data.

19.4. Axt-Sahalia (1996) [nonlinear, stationary and recurrent process]

Both the drift and the diffusion function are nonlinear, i.e.

dXt =  (oo ■+■ a iXt + o>2Xf ■+• 013/ Xt) dt -f- i3o + Xt -+- f a x f *^ dBt (19-4)

The process satisfies Assumption 17.2 provided the parameter values meet specific require­

ments [see Al't-Sahalia (1996b)]. The parameter values specified below make Assumption

17.2 hold, that is they imply stationarity. Notice that neither the marginal stationary dis­

tribution nor the transitional density are known. In consequence, we simulate the model 

using a discretization scheme. We use a scheme with order-two error belonging to the 

class of Milshstein approximations [c.f. Milshstein (1974) and Duffie (1996)]. Milshstein 

approximations are schemes of higher order than Euler discretization schemes.

The parameter values are set according to the estimated values in Al't-Sahalia (1996b, 

Table 4, page 412), namely

ao =  -5.652 x 10-3 

a x =  9.648 x 10"2 

a 2 =  -5.349 x HT1

122

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

q3 =  1.041 x 10"4

50 = 1.099 x 10-4

51 = -2.007 X 10-3 

Si = 1.329 x 10~2

Si = 2.051.

19.5. Experimental process [Nonlinear, nonstationary and recurrent process] 

Both the drift and the diffusion function are nonlinear, i.e.

dXt =  (a0 + a xX t + Q2/ X t) dt + (^JSo +  S \X t + S iX ^ j dBt (19.5)

The process is nonstationary and non explosive (that is it satisfies Assumption 17.1) for the 

parameter choice specified below. We set the parameter values as follows:

a0 =  -4.643 x 10 '3 

a x =  4.333 x 10-2

a 2 = 1.304 x 10-4

3q =  1.108 x 10 '4

di =  1.883 x 10-3

Si = 9.681 x 10 '3.

As before, we use an order-two Milshstein approximation to simulate the model.

20. The sim ulation results

In this section we report the outcome of our simulations by addressing the six questions 

that we posed in the introduction to this chapter. A subsection is devoted to each question.

It is worth emphasizing from the beginning that we simulate 5000 daily observations 

(At =  1/250) from the five processes described above. We set the number of observations 

equal to 5000 to replicate almost 20 years of data. This is consistent with the magnitude of 

the data sets recently used in the investigation of the short-term interest rate process. We 

use 1000 repetitions. In our preliminary analysis the estimates converge quickly even after 

a few hundred repetitions, and 1000 repetitions is certainly deemed sufficient.
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20.1. Nonparametric estimates: small sample bias.

Two variables are to be chosen when implementing functional methods: the kernel func­

tion^) and the window width(s).

We begin our experiments by setting the same kernel function across different methods. 

The function that we use is a first order Gaussian kernel.

It is well known that the choice of the bandwidth(s) is crucial in nonparametric statistics. 

Still, how to choose it properly is an open issue. While asymptotic results give us limit 

conditions (i.e. orders of convergence) that the bandwidths. specified as sequences, have 

to satisfy, little is known about how to set them in practice. In effect, what we choose is 

a number rather than a sequence. Then, scaling plays a vital role. We now clarify this 

concept.

In nonparametric regression analysis various methods have been proposed to select the 

■‘optimal” bandwidth. Some of these methods have been used in the analysis of diffusion 

models [Jiang (1998), inter alia]. For example, consider the standard regression model

yi =  m(xi) 4- £i

where (/, is the i-th observation of the vector of dependent variables, j ,  is the i-th obser­

vation of the vector of exogenous variables, m (i,) is a function of r , and e, is a regression 

error satisfying certain properties. In regression analysis the so-called least-squares cross 

validation bandwidth is chosen as the solution to the following criterion

1 "
“F 1 "  “  mfc(Xi)]2B7(Xi) (20.1)h TI i=l

where to(x,) is a weighting function introduced to reduce the impact of boundary biases 

by giving less weight to observations that are at the extremes of the distribution of the 

sampled process. The estimates m/,(xj) are leave-one kernel estimates of m(xi) obtained 

by considering every data point apart from the i-th observation in the estimation of the 

function at the i-th observation. Under some assumptions, it can be proven that the LSCV 

bandwidth is optimal with respect to performance criteria such as the average squared 

error, the integrated squared error and the conditional mean squared error [c.f. HfLrdle and 

Marron (1985) and Stone (1984)]. Typically, we set the bandwidth equal to n, the number of 

observations, raised to some negative power, i.e. hn =  cn~k. The proportionality constant 

c is chosen to satisfy the criterion
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1 ,  ^

min -  Y'lV i -  mc(xi)]2icr(xi) (20.2)c n ' t=i
which is just a version of (20.1). This procedure is consistent with the underlying asymptotic 

theory, provided k  is chosen accordingly, and allows us to determine the appropriate scaling 

factor. Effectively, we choose a number. If (20.1) rather than (20.2) is implemented, then 

k  and c can not be identified separately. Generally, more complicated criteria are used. 

Consider

1 - 1 
nun -  ^ [ i / i  -  mc(xi)\2m (xi)Z (-,c) (20.3)

t= l

where E(^,c) =  l-t-^K (O ) and h = cn~k for some k consistent with the asymptotic theory 

of the estimator mc(xt) being investigated. The function 5(£, c) is known as Shibata penalty 

function. It is introduced to penalize excessively small bandwidths. Should this function

not be in the formula, then the criterion would determine overfitting and introduce too

much variation in the estimates35.

Unfortunately, procedures with a firm theoretical justification in the regression context, 

such as (20.2) or (20.3) above, are not fully applicable in the case of diffusion models. 

Even though we specify the drift and diffusion function estimators as sample analogues to 

conditional expectations, the nature of the underlying process and of the true functions 

makes the problem different from pure regression analysis. Still, criteria such as (20.3) are 

widely used in the functional analysis of diffusions. Typically, yi is set equal to x,+1 -  x, 

in the case of drift estimation and equal to (xt+i — x*)2 in the case of diffusion function 

estimation. Accordingly, mc(x j is either y.c(xt)dt or cr2c(xt)dt. While this way of proceeding 

has some appeal, it seems to be inaccurate and does not have a convincing theoretical 

justification. Diffusion estimation resembles a typical regression analysis problem more 

closely than drift estimation. This observation is embodied in the limit theories for the 

diffusion estimators in Section 18 and Part I and derives from the rate of convergence which 

is equal to the square root of the number of observations times the bandwidth (over a fixed 

time span). Note, in fact, that this is the same rate that would emerge from a standard 

regression context. Not surprisingly, then, when we implement the selection criterion (20.3) 

in the diffusion case we experience nice convergence properties. A full-blown minimization 

of (20.3) in the drift case tends to deliver a broad array of different values for the constant

35 Criterion (20.3) has been recently employed by Chapman and Pearson (1998) in the analysis of diffusion 
processes.
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according to the specific trajectory being examined. Such values are generally quite large. 

We regard the poor convergence properties as a sign that the criterion is misspecified (a 

different standardization is likely to be needed). Further, we interpret the large values that 

are generally delivered as a signal that the optimal window width for the drift is generally 

larger than conventionally believed [c.f. comments in Section 18]. We will come back to 

these observations. It is worth saying here that, in the light of our previous discussion, in 

this chapter we use criterion (20.3) only for the diffusion and simply as an informal check. 

The rigorous design of data-driven selection criteria for diffusions is certainly a topic of 

interest for future research but goes beyond the scope of the present work.

Finally, we describe how the bandwidths are selected. Due to the difficulties in choosing 

the correct window width for the drift we decided to implement a conservative selection 

procedure. We now clarify what we mean by ^conservative”.

We start with the diffusion function estimator in Stanton (1997) and JK (1997) [S-JK 

diffusion, hereafter]. We set the bandwidth equal to f^W S -JK ) _  where 5  js the

standard deviation of the observations and n is the number of observations (which is equal 

to 5000). The time span T  is set equal to 1. We choose k  and c according to the limit theory 

and criterion (20.3). The exponent k is chosen equal to Theoretically, the bandwidth 

£<n? = f^  P1̂  t*ie sarae r°le as provided

h d i f } ( B P )  _  .  d i f f ( B P ) ,  
n,T=\ K n,T= I '

In consequence, we set =  2h % ^ P) =  h% n f~ Jle).ti, i  = 1  nfi = l  n ,T = l

As far as the drift functions are concerned, we start our experiments using the same 

bandwidths as for the diffusion function estimators, that is we choose window widths that 

are potentially suboptimal [c.f. Section 18]. This is a useful way to proceed because it gives 

us a feel for the extent of the suboptimality and for the corrections to be implemented.

We begin commenting on the diffusion estimators [c.f Figures 8-14, first column]. We 

are not surprised to verify that both the S-JK estimator [Figures 8-14, first column and 

first row] and the BP estimator [Figures 8-14, first column and third row] capture the 

underlying functions quite well. They also deliver very similar outcomes across processes. 

The magnitude of the differences is numerically minimal but differences do occur mostly at 

the upper boundaries of the empirical range of the processes, that is where observations are 

thinner. The relative merit of the two procedures in finite sample depends on the smoothness 

of the true functions. Specifically, in the presence of flat diffusions [i.e. Brownian motion
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and Vasicek in Figures 8, 9 and 10] the BP estimator displays a smaller bias at the upper 

boundary. The opposite result occurs in situations where the diffusion function is not a 

constant. In small sample, this is due to the double-smoothing procedure that characterizes 

the BP estimator.

We now discuss the drift estimators [c.f. Figures 8-14, second column]. The differences 

across methods and processes are clearly more marked than in the diffusion function case. 

Nonetheless, two main stylized facts can be detected. First, the suboptimal choice of the 

window widths translates into undersmoothing. The selected bandwidths are generally 

too small to capture underlying functions that are quite flat. This is not surprising. In 

the case of the estimators in Stanton (1997) [Figures 8-14, second column and first row] 

and Part I [Figures 8-14, second column and third row] the asymptotic theories allow the 

leading window widths for the diffusion (i.e. / i * i n  the former case and in

the later) to have admissible rates of convergence that can be faster then the corresponding 

rates for the drift bandwidths (respectively, and The reason is that local

information is not sufficient for identification of the infinitesimal first moment of a diffusion, 

unless stationarity is invoked as in the case of the JK estimator for the drift [Figures 8-14, 

second column and second row]. Being the JK estimator based on the restrictions imposed 

by the distribution function of the process and its diffusion function on the theoretical 

drift, pointwise identification based on local information is possible. Further, it is perfectly 

appropriate to set proportional to n~k with k =  \  as in the diffusion case. The

constant of proportionality can be calibrated to achieve better fit across models.

Second, with the sole exception of the Vasicek process in correspondence with low levels 

of persistence [c.f. Figure 9] and for very high levels of the process itself, the drift estimator 

proposed by BP does systematically better that the alternative methods in reproducing 

the underlying drift function. This result is perfectly understandable and represents the 

“flip side of the coin” of our findings in the diffusion case. Since the drifts are generally 

quite flat, double-smoothing induces better fit. In other words, using BP we seem to gain 

in terms of drift estimation while we slightly lose in terms of diffusion function estimation. 

Note, though, that the gain clearly outweighs the loss. Hence, the trade-off between optimal 

smoothing for the drift and optimal smoothing for the diffusion appears to be less severe 

when a convolution of kernels is employed.

It is worth emphasizing again that we are using potentially suboptimal values for the 

bandwidths. Therefore, we are not claiming that double-smoothing is a prerequisite for
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bias reduction. We are simply saying that a naive choice of the window widths seems to 

penalize statistical fit to a lesser extent in the presence of convoluted kernel weights. Due 

to the difficulties posed by the appropriate choice of the smoothing parameter for the drift, 

this is a valuable information for empirical work. On the other hand, less naive choices of 

the smoothing parameters determine minimal biases even when simple kernels are employed 

[see below).

So far, two lessons can be drawn from our analysis.

[1] Choices of the bandwidth that are optimal for diffusion estimation generally determine 

undersmoothing for the drift.

[2] The trade-off between optimal bandwidths is less severe when we use convoluted 

kernels. The price paid for oversmoothing the diffusion function is minimal compared 

to the gain from bias reduction for the drift. Double-smoothing is in some sense more 

“forgiving”: suboptimal choices of the smoothing parameters have a smaller effect on 

inference.

Of course, the analysis is contingent on the specific processes being used. On the other 

hand, we study a wide array of specifications with different statistical properties. Many of 

the proposed specifications have been, or could be, used to model the short-term interest 

rate process in continuous-time. Interestingly, some of our findings allow us to reassess the 

informational content of one of the outcomes of the empirical literature on the spot interest 

rate process, that is the estimated nonlinearities of the drift at the upper boundary of the 

range of the sample process. Note that undersmoothing often implies nonlinear behavior 

at the boundaries even in the presence of linear drifts. In a recent paper, Bandi (1999) 

points out that nonlinearities might be partly due to erroneous choices of the smoothing 

parameter. When using functional methods, imprecise choices of the window width would, 

in fact, exacerbate the finite sample bias that naturally arises at the boundaries of the 

empirical process due to the truncation of its finite sample distribution [c.f. Part II and 

Chapman and Pearson (1998)]. Our simulations give support to the importance of the 

bandwidth and somehow reduce the role played by the truncation in explaining nonlinear 

dynamics.

We now increase the leading bandwidths for the drift, that is hdr̂ t\S ,̂ ha and71,2=1  71,2=1Jp -
en y=1 . We implement two different experiments. We take the original “optimal values”
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of the window widths in the diffusion case and multiply them by 1.5 [see Figures 8-14, third 

column] and 2 [see Figures 8-14, fourth column], respectively.36 The results confirm our 

intuition. Increasing the bandwidth generally determines better fit. Exceptions occur in 

the case of the Vasicek and CIR processes for low levels of persistence [c.f. Figures 9 and 

11]. In this cases, in fact, the original window widths appear to guarantee sufficiently small 

biases over the entire range of the sampled process. The intuition goes as follows. Recall 

that in the case of Stanton (1997) and BP, the asymptotic condition on the smoothing 

parameters for the drift depends on the rate of divergence of local time to infinity. The 

slower is this rate, the slower should be the rate of convergence of the leading bandwidth 

sequence to zero. This should translate into larger numerical values. Theoretically, higher 

persistence determines a slower rate of diverge to infinity of the time spent by the process in 

neighborhoods, i.e. local time. In small sample, higher persistence determines fewer visits 

to levels that are far from the initialization of the process and hence less precise estimates 

at the boundaries of the empirical range of the process.

Then, the recipe is simple: ‘‘relatively small” bandwidths should be used in the pres­

ence of low persistence, whereas ‘‘relatively larger” bandwidths should be employed when 

persistence is high [we will later clarify what we mean by ‘‘relatively small” and "relatively 

large”]. This is perfectly understandable if we take into consideration the fact that the drift 

of very persistent processes is quite flat. This remark has clear empirical implications. It 

is a well-known fact that U.S. short-term interest rate processes are very persistent [c.f. 

Pritsker (1998)]. The second value of the mean-reversion parameter k that we use in our 

simulations of the Vasicek [Figure 10] and CIR [Figure 12] processes is equal to 0.2145 and 

implies a monthly autocorrelation of 0.982 which is equal to the upper end of the estimated 

values for US interest rate data [c.f. Chapman and Pearson (1998)]. Being the U.S. inter­

est rates slowly reverting, identification of their infinitesimal first moments requires larger 

bandwidths. As mentioned earlier, inaccurate smoothing might, in fact, determine spurious 

noniinearities [c.f. Bandi (1999)].

These observations suggest a rough rule-of-thumb to choose the uleading” bandwidths 

in the drift case:

[1] Start from a sensible choice of the diffusion bandwidth based on credible criteria such

36 By virtue of the clear pattern that is determined by our (increasing) choices of the leading window 
widths, the outcome of different choices can be easily deduced. As expected, the larger is the bandwidth, 
the flatter is the estimated drift.
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as least-squares cross validation.

[2] Use the bandwidth choice in the diffusion case as a lower bound to select the drift 

bandwidth.

[3] The numerical distance from the lower bound needs to be directly related to the 

persistence of the process. Higher persistence requires larger values. Persistence can be 

assessed by using a simple descriptive statistic such as the first-order autocorrelation.

20.2. Nonparametric estimates: small sample volatility

Apparently, the finite sample dispersion of the functional estimates is inversely related to 

the amount of smoothing being implemented. On the other hand, increased smoothing 

generally implies better fit (reduced bias) in the case of drift estimation. In other words, for 

many of the processes considered here [namely for highly persistent processes], the trade-off 

between bias and volatility, which is a typical feature of regression analysis, does not play an 

important role in the estimation of the infinitesimal first moment. Thus, consistently with 

the limit theory that dictates potentially larger bandwidths for drift estimation than for dif­

fusion estimation, our simulations show that more smoothing (whether determined by larger 

window widths or convoluted kernels) generally has the appealing feature of determining 

more accurate fit and reduced volatility in finite sample.

The usual care must be exercised when dealing with processes whose reversion to the 

mean is very fast. The drift of a stationary process can be identified locally [see JK (1997)]. 

Hence, we expect the bias-volatility trade-off to be more severe than for nonstationary 

processes. Generally speaking, the extent to which the trade-off matters in estimating the 

drift depends on the level of persistence. The drift of a process with high persistence can 

be accurately estimated at a low cost in terms of dispersion by appropriately choosing a 

relatively large smoothing parameter.

20.3. Nonparametric estimates: asymptotic distributions versus finite sample 
distributions

We are mainly interested in studying the finite sample properties of the estimators proposed 

by Stanton (1997) and BP. We confine ourselves to these two approaches since they are 

theoretically more flexible than the approach suggested by JK (1997). In effect, they do 

not rely on stationarity. Furthermore, even when the process is stationary our results show
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that no benefit seems to arise from using the JK drift estimator (recall that the JK diffusion 

estimates coincide with Stanton’s) [see Subsection 20.1].

In Figures 15-17 we report the finite sample and asymptotic distributions of the Stanton 

and BP estimators. The first two rows report the drift estimates in Stanton (1997) and BP 

(1998) respectively, whereas the last two rows report the corresponding diffusion estimates. 

The underlying processes are the CIR process (for two different levels of persistence) [Figures 

15-16] and the Al't-Sahalia process [Figure 17]. The results are qualitatively similar when 

using different processes.37 We compare the pointwise distributions at numerous levels in 

the empirical range of the underlying process. The bandwidths are ‘‘optimally” chosen. 

For the CIR process with low persistence we use the benchmark bandwidths [Figure 11. 

columns 1 and 2]. For the Al't-Sahalia process and the CIR process with high persistence 

we use the benchmark case for the diffusion estimates and the largest leading bandwidths 

[from experiment 2 in Subection 20.1] for the drift estimates [Figures 12-13, columns 1 and

4]-

The results confirm the validity of functional methods that do not rely on stationar­

ity for inference in small sample [c.f. Pritsker (1998) for a discussion of the limitations of 

stationarity-based nonparametric and semiparametric procedures]. The finite sample dis­

tributions are sufficiently close to normals. The similarity to normals is very satisfactory at 

levels in the middle of the empirical range of the process. Skewness plays a role at levels 

that are close to the ends of the distribution. Consistently with Figures 8-14, biases arise 

mostly at the extremities of the empirical range, that is where observations are thinner. 

The asymptotic variances replicate quite well the finite sample variances. As in the bias 

case, this is particularly true for values that are central to the empirical distribution.

The similarity between finite sample and asymptotic distributions is generally more 

accurate in the drift case. In the diffusion case, we experience a relatively more marked 

tendency of the limit theory to underestimate the true finite sample dispersions. A simple 

pattern can be detected. The closer is the analyzed level to the lower end of the empirical 

range, the further away from a symmetric distribution is the finite sample distribution and 

the smaller is the limiting variance compared to the true finite sample variability. These 

results generally hold across methods, processes and degrees of persistence. Of course, 

at values whose corresponding local time is large (generally values in the middle of the 

empirical range), the limiting distributions guarantee a relatively more accurate description

3‘Similar graphs for additional processes can be provided on request.
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of their finite sample counterparts.

20.4. The choice of th e  kernel

Different choices of the kernel function K(.) that is used to weigh observations [or weighted 

averages of observations as in the case of BP] do not affect significantly our inference in terms 

of bias. The small sample variability is slightly affected and the direction of the changes 

is generally coherent with the theoretical properties of the kernels being used. Also, the 

relative performances of the estimators analyzed here does not depend on the choice of the 

kernel.

As mentioned earlier, though, if we interpret the procedure suggested by BP as based 

on convoluted kernel weights, it appears that double-smoothing might be advantageous to 

estimate the drift without imposing a severe cost on the estimation of the diffusion function 

[c.f. Subsection 20.1]. A possible explanation for this result is the following. There are no 

theoretical reasons why Stanton (1997) and BP should deliver different results in the limit. 

To phrase it differently, there are no theoretical reasons why double-smoothing and single­

smoothing should deliver different results asymptotically. The problem is that, as far as the 

point estimates are concerned, ‘‘the limit” is “closer” for diffusion estimation than for drift 

estimation. Volatility is easier to identify than the conditional mean. In consequence, in 

the case of diffusion estimation, methods that guarantee consistent estimation deliver very 

similar results even in finite sample [for comparable choices of the smoothing parameters]. 

This is clearly not the case when estimating the drift. Unless close-to-optimally-chosen win­

dow widths are selected, different estimators for the drift generally produce quite different 

outcomes. Then, the use of convoluted kernels might be beneficial for the reasons outlined 

in Subsection 20.1.

Note that the estimators in BP are originally defined based on Gaussian kernels convo­

luted with discontinuous indicators. The use of a smooth function replacing the indicator 

function is perfectly legitimate and, coherently with the asymptotic theory [c.f. Part I], 

does not change the results qualitatively.

20.5. The choice of the  bandw idth

As discussed earlier, the choice of the smoothing parameter is crucial and particularly 

difficult when dealing with the drift estimator. The asymptotic theories and the simulations 

presented here are consistent in paving the way for optimally choosing generally larger [than
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for diffusion estimation] bandwidths for the drifts. However, the stochastic conditions that 

the drift bandwidths have to satisfy, i.e. e^ jL x{T , x) ^  oo and h ^TLx(T, x) a—̂ oo, render 

the selection problem quite hard to solve explicitly due to the lack of closed-form solutions 

for the rate of divergence of the local time factor [Lx{T,x)\ to infinity. Since the drift of 

a general process cannot be identified locally, the stochastic properties of the underlying 

process play a vital role through the above-mentioned conditions. In consequence, we believe 

among the most important contributions to the functional estimation of scalar diffusions is 

now the design of sensible automatic selection criteria for the smoothing parameters.

Note that persistence affects the rate of divergence of the local time factor to infinity [c.f. 

next Subsection]. Hence, coherently with Conley, Hansen and Liu (1997) we emphasize that 

the optimal bandwidth should depend on the dynamic properties of the underlying process 

[see Pritsker (1998) for a comment in the same spirit]. Our previous discussion should also 

clarify that this point is particularly valid as far as drift estimation is concerned. Being the 

infinitesimal second moment of a diffusion locally identifiable, it is certainly less valid in the 

case of diffusion estimation.

20.6. The statistical properties of the underlying process

We already discussed the importance of temporal dependence and its qualitative effect on 

the optimal window widths for the drift through the local time-based conditions in the 

previous sections. The general rule goes as follows. Since stationary processes are locally 

identifiable [see JK (1998)], they require smaller bandwidths for the drift than nonstationary 

processes, i.e. the rate of divergence to oo of the local time factor is faster for stationary 

than for nonstationary processes. Further, within the class of stationary processes, higher 

temporal dependence triggers larger bandwidths.

As mentioned earlier, for comparable choices of the smoothing parameters, the drift 

estimator in JK (1998) does not outperform the more flexible estimators in Stanton (1997) 

and BP in the presence of stationarity. Further, the JK estimator generally entails larger 

biases at the boundaries. This is due to the poor convergence properties of the derivative 

estimates at the upper and lower ends of the empirical range of the process. Interestingly, 

when the underlying process is nonstationary [i.e. Brownian motion and experimental 

process in Figure 8 and Figure 14], the JK estimator delivers outcomes that are quite 

comparable to those of the Stanton estimator [with the exception of the usual larger biases 

at the boundaries],
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21. Conclusion

When little is known about how to parametrize stochastic differential equations, accurately 

implemented functional methods can represent valuable descriptive tools.

Theoretical justifications for employing functional methods rely on limit arguments 

based on increasingly frequent observations. Coherently with JK (1998), we show that 

daily data represent a good approximation to increasingly frequent observations for esti­

mators that hinge on high frequency observations [c.f. Part II], In finance, for example, 

daily data are readily available. In consequence, the difference between limit, requirements 

and finite sample data sets does not represent a major empirical problem. Hence, we re­

gard the fully nonparametric identification of stochastic differential equations as meaningful 

statistical inference.

Local identification of the diffusion function using data that are sampled at daily fre­

quencies is easy to implement. Also, being the diffusion locally identifiable, the stochastic 

properties of the underlying diffusion process do not play a vital role in inference.

As opposed to diffusion estimation, identification of the drift for general classes of 

processes [as in Stanton (1997) and BP] is intimately related to the their stochastic be­

havior over time and requires observation of the trajectories over a long time horizon. Two 

are the consequences. First, larger smoothing parameters for drift estimation than for diffu­

sion estimation are generally needed. Second, given the importance of stochastic asymptotic 

conditions based on the local time factor in choosing the optimal smoothing parameter for 

the drift, the actual choice of the bandwidth is particularly cumbersome. As a general rule, 

the more persistent the process is, the larger should be the window width. In effect, per­

sistence negatively affect the speed of divergence of the time spent by a recurrent process 

at a point (i.e. the chronological local time of a process at a point) to infinity. Being the 

relationship between the admissible rate of convergence of the bandwidth sequence and the 

rate of divergence of the local time factor inverse, a smaller local time requires a larger 

smoothing parameter. Intuitively, more persistent processes have relatively flatter drifts 

and, hence, demand increased smoothing. As discussed earlier, due to the significant per­

sistence of U.S. interest rate series, the nonlinear behavior of the drift in the short-term 

interest rate literature might be partly due to inaccurate choices of the smoothing parameter 

determining undersmoothing [c.f. Bandi (1999)].

Interestingly, even though the drift of a stationary process can be identified locally using

134

Reproduced with permission of the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

the information contained in the time-invariant distribution function of the process [as in 

JK (1997)], no clear benefit in terms of inference seems to arise with respect to the outcomes 

of methods that are theoretically robust to deviations from stationarity [Stanton (1997) and 

BP],

To summarize, we believe the main issue in the functional estimation of diffusions is 

how to correctly choose the window widths. A potential trade-off characterizes drift and 

diffusion estimation. Should the same bandwidth be employed, the optimal drift bandwidth 

would generally oversmooth the diffusion, whereas the optimal diffusion bandwidth would 

generally undersmooth the drift. Still, as discussed earlier, automated criteria '‘borrowed” 

from regression analysis provide some valuable indications in selecting a sensible smoothing 

parameter for the diffusion function. The same consideration does not apply to the drift due 

to the difference between drift estimation and regression analysis, thus making the design 

of meaningful data-driven selection criteria more valuable in this case. This paper provides 

some guidelines and a simple rule of thumb to choose the optimal window width for the drift. 

We also point out that double-smoothing [as in Part I] based on a convolution of kernels 

can, in finite sample, improve the trade-off between sensible magnitudes of the smoothing 

parameters for drift and diffusion function estimation. Despite this, further research on 

bandwidth selection criteria for diffusions is certainly needed.

The comparison between the finite sample and asymptotic distributions is very encour­

aging. As discussed in Part II and Bandi (1999), contrary to functional estimators relying 

on the assumption of stationarity [c.f. Al't-Sahalia (1996) and JK (1997), inter alia], the 

estimators in Part I and Stanton (1997) have asymptotic distributions that depend on the 

dynamic characteristics of the underlying process (such as persistence) through the iocal 

time factor. This is a particularly nice feature since it is apparent that the finite sample 

distributions depend on the stochastic features of the process. This observation provides a 

possible answer to one of the observations in Pritsker (1998) where it is noted that kernel 

estimators based on stationarity have the potential for misleading inference in studying the 

short-term interest rate process due to the fact that “...the asymptotic distributions do 

not depend on persistence although the finite sample distributions do”. As shown in this 

chapter, estimators that are robust to deviations from stationarity have asymptotic distri­

butions that sufficiently well approximate their finite sample counterparts. Hence, when 

using estimation methods such as those in Stanton (1997) and BP, the need for comput­

ing standard errors and confidence bands using bootstrapping procedures is certainly less
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compelling than suggested by Pritsker (1998).

22. Proofs

In this section we report the proofs of Theorem 1 and 2 in Bandi (1999).

22.1. Proof of Theorem 1 [Bandi (1999)]

We use, in parts, results contained in Part I. Consider the estimator

Mn,r^) = T------------------- — ------   •
A”'r  £ L i K ( ^ % ^ )

We start by proving that

£n.T(*) -  m(*) a-^' 0-

Since
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where /c^x =  max^n sup \XS — Xi&n T | as in Part I. We know that Kn T =
*A„,T<S<(i+l)AntT

1 /2oa.s.{&n,T ) S arbitrarily small, then the bound becomes

const.oa.a. A ^  ) +  - -------------------- ~ y.A ~i------------•

By a straightforward application of the results in Part I [Section 5, Theorem 5.11], the 

second term converges to fi(x) provided (An,r) 1//2~g 0 and 0. In order

to prove a.s. consistency it remains to prove that 0 0. Notice that the martingale
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#(t+i)A„ T- We now invoke a strong law of large numbers for martingale differences [e.g. Hall 

and Heyde (1980, Theorem 2.19, page 36)] to obtain
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”71,r  “ i ” n,T

This can be written, as follows,

1 JfiA — X /  /•(*+l )An,r /-(*+l)^n,r
= 7—  £ k ( - ^ — ) /  ( /* (* ,) -M *)]^ +  /  <7(X,)dfl,

«n.T  i r i  hn,T \J iA n .T ViAn.r

+ *_ £ K (% ^ , / ,i+1)^ ^ , ^ .
V t  ^ n . r  ViAn.r
' * '

(Cn.r (D)

Consider U Tl(7’(r) =  y/'/in,rCn,r(r ) which is equal to

[nrj-1 _  /.(t+lJA n.r
Un,r(r) =  £  K ( - ^  ) f  <r(Xa)dBa.

\A » ,r hn,T J i An.T

Un,r is a continuous martingale whose quadratic variation process [Un,rjr is

[nr] —1 y. r ( i+ l)A „ r

[U n.rlr =  r f  E K2( % - ^ )  /
h n , r  ^  ^ n , r

[n r]-l

”n,r Vo hn,T \  ”n,r

=  7 ^ -  r  K 2( ^ ) a 2 (a)Lx ( r T , a ) d a ^ o U l )
«n,T 7-oc *n,r

r o c

= /  K 2(c)<t2 (x  +  hnrTc)Lx{rT, x  + hntTc)dc -r oa.a (1)
J — 00

^ ( / ° °

Also, the covariation process [Un>r ,  B]r —*■ 0 a.s. Then, let

Pn,r(r) =  inf{s : [Un,r ]a >  r}

1 3 8
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be a sequence of time changes. Define Vnt7’(r) =  U„tx (Pn,T(r))• The process V n,T(r ) is the 

Dambis, Dubins-Schwartz Brownian motion of the martingale Un,r  [see, for example, Revuz 

and Yor (1991, Theorem 1.6, page 170)]. The conditions on the variation and covariation 

process are sufficient to ensure that

(Vn,r , B ) ( V , B )  

where (V,B) is a vector of independent Brownian motions. Hence,

U„,r(r) =  y/hn,T I V - } / cr(Xs)dBs
thl,T VtAn.T[ K h

v ( ( / “  K'J(c)<fc] <72(i)Zx (rr,i)j .

This, in turn, implies that

Further,

Un,T( l ) - V

U „ , r ( l )

(OC K*(c)dc)<x2(x)Lx (T ,x )) .

-X»,t xst A'V r  x \T  1  \ (G C K2(c)dc =
Tx(T,x)

Hence,

\jLx{T ,x)hn 'T
1 4 i . r  p n - l ^ / ^ n , r  x \  ( • ( > + l ) A n , r  v  \ j d

A„,r /in.r K ( ~ frn~  JJiAn.r
^n.r v^n v / ^ ,An.r z \ 
V r  2 - t = l  /,„ J. 1

We now study An,r-

[ / i ( X s ) -  / z ( x ) ] d s

a—1

I > c ̂ V r  JiAn.r>/ (M(Xs) - M A tAn,r ))dS

^n.r

A „ .r  £ k ( ^ . a . j  r )  _  M x))
hn  T »=1 hr»,r

A2An,T
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By the Lipschitz property of /z(.), the first term can be bounded as follows,

A1  ̂ _  X\ /’(,+ 1)An':r / f y X / y  ,K i,t  =  7— > K ( ----1-------- ) /  {p{Xs) -  li{Xi&nT))ds
"n.r i=1 “n,T JiA„T

<-

where /cntr is, as before, equal to maxj<„ sup |XS -  J£TiAn,T|- The bound
*An.T<S<(i+l)An,x

becomes

< (oa.3. ( a $ - * ) )  ( l* ( r ,x )  + o a.a f  (An,r) ^ .
V hn,T

Further, by the mean-value theorem and the occupation time formula we can write,

< T  =  ^ t K

= j - j r r K ( ^ - ^ ) / z '  (/(X .,x)) (Xs - x )  + o 0.3. ((A „,r)1/2- £I x (T,x))

= i  / I  K (^ 7 )^  ( /(a ’X)) (° ~ x ^ T ^ da + ((A „,r)l/2' £I.Y(T.x))

where x* = / ( .X ^  r ,x) € pftAn,7Mx] ^  we multiply by then the first term becomes

STr (sTr /  (/(a. j;)) (a -  x)Lx {T.a)da\

= A -  f °  ( /(a " c» ( t T ^ )  l x!.T,a)darbi,T 7-oo V r  V "n,r /

= I cK{c)n' (/(x ,X  +  /ln,rc)) ~Lx(T,X + hnjCjdc +  £*».,. (1)
J  —00

= /^cK (c) Tx(T,x-f hn,rc)dc + oQ.s.(l)

=  f  cK{c) {Lx{T,x + hntTc) -  L x(T ,x))dc +oa.s(l).

By Lemma 3.5 in Part I and neglecting the smaller order of magnitude,

/ I CK(C)2 (&H) (Ix(T’1 + ̂ ’TC) "Ix(r’X)) d°
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=  2 ( ^ )  5 j (i * ( r - * + 'W K = ) - t * ( r . * ) ) *

• i a  ( ^ j )  f ^ a n c ) m [ L x {T,x),c)dc

4 * ( ^ )  ^ L x (T ,x )  J ° ° jK (c )m ,c )d c .

Now, define G(u) =  J ' ^  cK(c)dc. We can integrate cK(c)<B(l, c)dc by parts and ob­

tain,

rOC

I cK(c)©(l,c)dc 
7-00

= G (c)® (l,c)|!i0 -  r  G(c)d©(l,c)dc
7  —OC

=  -  f  G(c)d*B(l,c)dc 
7 —00

/oo
G(c)2dc)

'OO

where p — — 2|a — 6|abK(a)K(6)dadb. In consequence,

( V t ) 3' 2 A ” -t  =  (A n ,r)3/2 | { K (  Kt 1 ~ Kz)\

where B is a standard Brownian motion independent of Lx(T ,x) and p  is a constant of 

proportionality equal to 2 ( / , / )  where ( /,/}  is the “energy” of the function f(s) = sK(s), 

i>e- (/» /) =  — JZc  1° ~ 6|a6K(a)K(6)dad6. In turn,

Hence,

f ^  i .  v  ( t M i  2'
(a”'t)3/2 ‘ \  l r H ,
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yJhn ,T Lx{T ,x )  ( - - - - - - - - - - - - - - A n , r x l - - X  +  T ~ - - - - - - - - C w , r ( 1 Y A  - x
V I A „.r t s t  ^*An.T x \ An,7- v-'n lAn J  \

\ 7 ^ L « =i k ( -K -r ) 7^7 L ,= l K ( An,f' ).

=  yJhn, T L x ( T , x ) ( —- - - - - - - - - - - - - - - - n , T x  — “  +  7 - - - - - - - - - - - - - A n ’ T ^ .  _ x
Aj jT r-»n TW lAn.T X\ An.T V^n T/Y lAw,T \
fcn.r ^-*=1 '  hn.T '  ^n ,r “ *=l '  ^n .r '

^  C n ,r ( l ) _________
—* 'A„,r v / ‘̂ <An.r *\

hn,T L,i= 1 ** An,r  1

= \JhnrLx{T.x)  ( o M . ( a ^ )  +O p f - ^ £ 2 = )  + —------ ^
V V V  ̂ \ y / Z x < T , * ) )  f e fS tx

=  O p  ( / l n , T 2 )  +  2 0 a .a . ( l )  +  ^ K t L X { T , x ) (  ^

i x\
=1*4 An.r > ■

C n , r ( l )

= l K ( K t I

+ 0a.s. ( a \ i y  (L x (T ,x ))l/2 y / h ^ j  - t  iV ( Q T  K2(c)dc^ <x2(x)j . 

This proves the stated result.

22.2. Proof of Theorem 2 [Bandi (1999)]

The proof is similar to the proof of Theorem 1. Consider the estimator

, 2 , i  K ( i ^ )  ( % . , )in T  -  * a . . t ) 2
V ( * )  — A X.a - x

^ ■ T £ r =1K ( i ^ )

We start by proving that

SlrC*) ~ o2^ )  a-^' 0.

Since

(■ (̂*+t)^n,T ^ A n.r )
/•(i+l)A„,r /-(i+lJAn.r M i+ l ) A „

=  /  2 (X, -  X,An>T) M(* a)ds +  2 (Xs -  XtAn,r ) o-(Xa)dBs +
J i& n .T  J i& n .T  J i& n .T

then S^T(x) can be written as follows

*  1 ESrt 2 (■*• -  X <Z».t ) M*.)*!
& n 1T \ x )  a X iA .  - x

E L iK
*■

(a)
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1 g ." .1 K ( ^ ^ ) u £ [ g a- T 2 (X .  -  X , ^ r ) cr(X,)dB,

N ■ - ■ — ■ — V ■ ’ ■ —  ~
W

A "'t  E ?.i

First, we analyze q.

■*V"
(7 )

a  = i Er.-,1 2 (-*• -  x ^ . r )  w

^  E « , K ( ^ ^ i

< 2k».t EE .‘ K ( : ) [ g A- T n (X ,)H  

E 7 = . K ( ^ S ^ )

where «ntx = max,<n sup |XS -  AT.a^ t-I as earlier. Hence, by the Lipschitz
>An,r<«<(*+l)An.r

property of /i(.) we can write

q <
•2 « „ ,r  s r . : . 1 n ± % p )U ,£ ll A's  (MX.) -  M * ,A ..r )) a i  

A"J  ES-.

( 2Kn,r E ? -,‘ K ( ^ ^ ) M ^ A . . r )A „jl 

+  A"J- E i . K f i ^ )

, ,  >2 a ^ T S r i ' K t ^ ^ i j W J f ^ j A . . , . ]
< const. («n,r) ------------------- :— jrr— —------------ •

C - i *  ( ^ r 1 )

1/ 2—6Since Kn>T =  oa.a.(An r  ), then the bound becomes

, Al. a>  . 2K„.I. E r t, K(i f e f 5)W ^ .r )^ ,r ]
°a.a .l^n T / a X  a - i

E i .  « ( - & - )

By a straightforward application of the results in Part I [Theorem 5.11], the second term 

converges to 2Kn,rM x) provided (&n,Tji/2 e o and —♦ 0. In order to prove 

a.s. convergence it remains to prove that 0 * ^ 0  and 7 ^  cr2(x). We analyse (3 first. As 

before, the martingale
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r(i+l)&n,T X i \ .  r- — x
y(i-fDA..T =  /  K ( - ^ ----- )2 X , -  XiAn,r ) *(Xa)dBs

Ji&n.T "< ?

is measurable with respect to 9f(i+1)AnT , where S(j+i)An,r  =  {A e  S  : A{(t +  l)An,r < 

t*} 6 § t+Vt > 0}. Further,

E ( j / ( j + =  0

and, by the Ito isometry

V i)A n.r = ™r(t,(i+1)AnI.) = E  ^ +UAn,T 4K2(X,Â ~ J) (X, -  X iAnJ V ^ l ^ j  < c

Also, (j/(j+i)An r , ^(t+i)An,r ) k  a martingale difference sequence with zero mean and variance 

<?(i+i)An T. We now invoke a strong law of large numbers for martingale differences [e.g. Hall 

and Heyde (1980, Theorem 2.19, page 36)] to obtain

En— 1 rsr ^ n . r ” *\
«=1 )

Below we derive the rate of convergence. In particular, we prove that

( I ■" A„-.r \
r Lx (T,x)h„.T^

Now consider

An r  V / '̂&n.T ~T \
2w«=l 1

By the Lipschitz property of <r2(.),

7 =
i a : . 1« ( W )  -  ° h x ^ . t )) dsi

^  E T - . K f ^ X ^ )

L E £ i ‘ K (£;f e F M * * O A * . T l  

+A"-T

< const.KTlfT + -7---------------------- :----y —— —------------ .
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The bound becomes

° a . j . ( ^ n T  )  " a  X " a  —x  '

^  E f., K ( i ^ - i )

Applying the results in Part I [Theorem 5.5], it is easy to prove that the second term 

converges to cr2(x) provided (An,r) 1̂ 2~e —► 0 and —*• 0. This proves a.s.

convergence. Now we study the asymptotic distribution. We are interested in the limiting 

properties of

r(*) -

= 1 EL'.1 K (^ ^ )[(jf,rtlia.,r - x,A„.r)2 -
A n T  i n j r n  Tf f Xi*n.T~X\k ^ f  i ^  T )

First, we examine the numerator

^ 7  E  K < X>X t  1 111 (X |‘* 11A- ' ' _  XiA">-)2 ”

This can be written as,

> ( ( w - W - ’w ^ )

n_1 rX iAn_T - x  yl'+UAn.r
£ E « ^ > rV r  " n , r  JiAn.T

)ds

(Bn,r)
n-1

+ ^ E K(*‘t ; T- r> f " + ' , A "'T ( A x . ) - ° * ( x ) ) d sbn,T ~  V r  JiA„'T

TZCTT

+ k T  E  K(—‘i f - - 1 ) /'<'+l,4”',' 2 (X. -  XjA„ .T) <r(X,)<iB, .
"ri,r f=1 «n,r JiAn,7-
> ' ■ v -  ' " — ^

(C„,r (l))

Consider Un,r(r) =  Cw,r(r) which is equal to 
’ V ̂ n.r

U”'T(r) = 7 C *  £  K( ~ / <,+l)4"'r 2 (X, - Xu.*)<r(X,)(2B,
V «n,T  ™n,T y/& n,T  JiAn.T

U„,r is a continuous martingale whose quadratic variation process [Un,r]r is
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rT T 1 _  1  V ' *  Tf2 (XiAn,T ~ X N 1  f  i ( Y  Y  \ 2 -£(Y\r1t
[U n,rjp — t  y ,  ^  ( Z ) a  /  4 (X a — XjA„ t ) < j { Xs)ds

V r  ^  n n ,r kn,T JiA .̂T
[ n r  1 — 1

1 /2 —e

=  4 ^ 1  £  K2( i ^ - ^ ) < T 4(Xi i n r + 0 ^ .(1 ))
«n,r «n,r

. 1 r T „ 2,X a - x .  4/v. . ,  , ( L x {rT,x)— 4 -—  / K (—----- )<r (Xa)ds +- oa.3 ( — t  (An,r)
«n,T Jo «n,T \  ^n,r

=  47 ~  r  K 2( ^ ) < r V ) I x ( r r , a ) d a  +  0a.s(l)
V r  J—oo

=  4 I  K 2(c)er4(x 4- hn'Tc)Lx(rT ,x + hnyTc)dc -+- oa.4(l)
J — OO

^4y  K2(c)dc^ <T4(x )Z *(r7 \x )+ oa.3(l).

Also, the covariation process [Un,x, £?]r —► 0 a.s. Then, let

P n , r ( r )  =  i n f { s  : [ U „ , r ] a >  r }

be a sequence of time changes. Define Vnj ’(r) =  U ^ r  (pn.r(r ))- The process V n.T(r) is 

the Dambia, Dubins-Sch.wa.rtz Brownian motion of the martingale Un,r  [see, for example. 

Revuz and Yor (1991, theorem 1.6, p.170)]. The conditions on the variation and covariation 

process are sufficient to ensure that

(Vn,r ,£ )  -1 (V,B) 

where (V, B) is a vector of independent Brownian motions. Hence,

t t  /r 4 _  \ /V x  (  1 1 _ x , /’<,+I)An‘r  o / y  Y  1 - f y u DU n ,r (v  — pr—  I , /  . K ( t  ) I 2 (X a — Xi& Tj (T(Xa)dBs
\/&n,T I K t  f r f  K t  J.A„,r 

-  V  ( ( 4 / ° °  R2(c)rfc)  ^ ( x)T x (rr ,x ))  .

This, in turn, implies that

U„,r (l) ^  V (  ( 4 / ° °  K2(c)dc) aA(x)Lx (T, x ) j .

Further,

Un,r(l) d v
An.T TSf*iAn.T

2w.=l **4 /in.T ' ( ( < / > » )  i g y -
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Hence,

f i x ( T , x ) K t  f e f e ?  E a ~ ‘ J I Z ^  T 2 ( X .  -  x ^ )  « ( X , ) d B . )

^  f e f E r . , K ( i ^ )

- i  V ( ( 4  J ° °  K!(c)dc'\ <r4( i) j  .

We now study An,r-

/ '<'+l,Anr ( ^ ( x . i - ^ X t ^ d s  
™n,T <bi,T 7«An,r

= X r ' t , K t -X>iF r X ) [ " * " * ' *  (a1( X , ) - o i ( X i i . . T) ) d ,
hn,T h n j  JiAn,T

A IAn.r

+ r= z i : K (x ‘Ar ~ I ) ( ^ ^ . r )  — 2w )  ■V r  rtn,T
“""V"-
An.T

The first term can be bounded as follows

A1 &n,T V"'r/v — x  ̂ /‘(,+1 Ân-r  ^  2 ^
An.r =  t— V K ( — 7------- ) /  (^ (X 4)-^ (J> f iAnr) ds

V r  “ 7  V r  d i A n . r

^ /A n,r ^  XtAn.r - x \

Hence, the bound becomes

Ai,r <  ( o a . , .  ( < ^ ‘ ‘ ) )  ( l * ( r , i )  +  * * .  (^ X̂ ' TZ) ( A n . r ) 1” - * ) )  •

Further, by the mean-value theorem and the occupation time formula we can write,

* * r  =  ~ V t o M * ; )  (X ia..t - » )"■n.T “ti,T

=  i  Jo K (T ^ ^ )<T, ( /(* 4’x)) ̂ ( /(* 4’x)) (* 4 '  x) +  4 ((A^ ) 1/2~£I x ( r ,x ) )

=  )ff' ( /(« .* ))* ( /(“.*)) (a -x ) Ix (T ,a )d a  + 0 a4. ( ( A n j ^ - ^ T . x ) )

A  2(1) An.T
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where x* =  / ( X ^  T,x) 6 T,x]. If we multiply by then the first term becomes* * nn,T

( h t r  f °  t  ( f(a' x ')) er( f(a' x ^ ( a ~ x )L x  (T’

= if{a' X))cr{f{a' x)) ( x f ) I x i T ' a)da

= J ° °  cK(c) (o - '( /(a ,x ))o -( /(a ,x ))) lx ( r ,x  +  /in,r c)dc +  oa.a.(l)

=  J  cK(c) L x{T .x  + hntTc)dc-i-Oa.sX\)

= J  cK(c) (L x (T ,x  + hniTc) -  Lx (T,x))dc  + o a.a(l).

By Lemma 3.5 in Part I and neglecting the smaller order of magnitude,

cK(c)2 j  2 jh n ,T (£ x ( r ’x +  hnJC> ~ i x ( T ’ *

= 2 ( S ) £ cK(c) v b (i't(r’i+A”jc) - ™ )<fc
• i  2 y ^ cK (c )® (ix (r ,i) ,c )< fc

= 2 -y tx IT .z )  cK(c)<B( L, c)dc.

Now, define G(u) =  j^ 0CcK(c)dc. We can integrate /f^ocK(c)©(l,c)dc by parts and ob­

tain,

r  cK(c)®(l,c)dc
7 —OC

= G ( c ) « ( l , c ) |^ -  f °  G(c)<ffi(l,c)<fc
7 — OO

= -  /  G(c)dS(l,c)dc
7 —00

=  B( r °  G(c)2dc)
7 —00

=  B(p/4)

where <p = — 2\a — 6|a6K(a)K(6)dad6. In consequence,
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(V t)3/2A"’T (V r )3/2 ( C r | j K( C r  } m(x)^

^4v3^o-'(x)) I x (T,x)^

where B is a standard Brownian motion independent of Lx{T ,x)  and tp is a constant of 

proportionality equal to 2 ( /,/)  where ( / , / )  is the ’‘energy” of the function f(s) =  sK(s), 

i.e. (/, / )  =  — |a — 6|a6K(a)K(6)dad6. In turn,

\jL x (T ,x )  / __________ r ________ 1 ^

('vr)3/2 ~

= JV(0

Also,

Bn,r
V r r ^ n  1 \
hn,T 2-t=l V hntT '

= n b  ST.* K ( % ^ )  r 2 (X. -  * * .,,)  „ (* .)*  , (  ^

fef S i, i  J k .t Z x (T,x ),
Hence,

J K . T L X ( T , z ) ( .3 /2  . C „ j ( l )

< T  f i x (T,x) ”-r  '  £ £ £ * . ,

 )  ) -  ((-I / ”  K2(c)<fc)
\ J K , T L x ( T , z ) J  V V  J - *  )

provided h n jL x {T ,x) 0 and —<• 0. If —» oo and ^  0, then

+oa

^0,4y?(</(x)) ^

i n j r ®  ly /^^n.r X\ 
fcn,T ^-'*=1 '  ^n.T ' j

where 2\a — 6|a6K(a)K(6)dad6. This proves the stated result.
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23. Notation

—*a.3. almost sure convergence
—*p convergence in probability
=>, weak convergence
:= definitional equality
Op(l) tends to zero in probability
Op(l) bounded in probability
o„.a.(l) tends to zero almost surely
0 a.3. (1) bounded almost surely
=d distributional equivalence

asymptotically distributed as 
MN (Q, V) mixed normal distribution with variance V
1,1 indicator function for the set A
a V b  max {a, 6}
Ci with i = 1,2,... constants

150

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Figure 8: The underlying process is Brownian motion. We simulate it by antithetic-variate 
method for 5000 daily observations, with 1000 repetitions. Diffusion and drift estimates obtained 
using the methods in Stanton (1997), JK (1997) and BP (1998) are in row I, row 2 and row 3. 
respectively. The solid lines are the estimated functions averaged across the 1000 repetitions. The 
dotted lines are the true functions. The dashed lines are 75 and 25 percentiles. Diffusion estimates 
and related curves are in the first column. Notice that the estimated diffusions in Stanton (1997) 
and JK (1997) coincide [see text). Drift estimates and related curves for increasing numerical values 
of the leading bandwidths are in column 2, 3 and 4. For a discussion of the bandwidth choices see 
text.
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Figure 9: The underlying process is the Vasicek process 1. We simulate it by antithetic-variate 
method for 5000 daily observations, with 1000 repetitions. Diffusion and drift estimates obtained 
using the methods in Stanton (1997), JK (1997) and BP (1998) are in row 1, row 2 and row 3, 
respectively. The solid lines are the estimated functions averaged across the 1000 repetitions. The 
dotted lines are the true functions. The dashed lines are 75 and 25 percentiles. Diffusion estimates 
and related curves are in the first column. Notice that the estimated diffusions in Stanton (1997) 
and JK (1997) coincide [see text]. Drift estimates and related curves for increasing numerical values 
of the leading bandwidths are in column 2, 3 and 4. For a discussion of the bandwidth choices see 
text.
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Figure 10: The underlying process is the Vasicek process 2. We simulate it by antithetic-variate 
method for 5000 daily observations, with 1000 repetitions. Diffusion and drift estimates obtained 
using the methods in Stanton (1997), JK (1997) and BP (1998) are in row 1, row 2 and row 3. 
respectively. The solid lines are the estimated functions averaged across the 1000 repetitions. The 
dotted lines are the true functions. The dashed lines are 75 and 25 percentiles. Diffusion estimates 
and related curves are in the first column. Notice that the estimated diffusions in Stanton (1997) 
and JK (1997) coincide [see text). Drift estimates and related curves for increasing numerical values 
of the leading bandwidths are in column 2, 3 and 4. For a discussion of the bandwidth choices see 
text.
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1

Figure 11: The underlying process is the CIR process 1. We simulate it by antithetic-variate 
method for 5000 daily observations, with 1000 repetitions. Diffusion and drift estimates obtained 
using the methods in Stanton (1997), JK (1997) and BP (1998) are in row 1, row 2 and row 3, 
respectively. The solid lines are the estimated functions averaged across the 1000 repetitions. The 
dotted lines are the true functions. The dashed lines are 75 and 25 percentiles. Diffusion estimates 
and related curves are in the first column. Notice that the estimated diffusions in Stanton (1997) 
and JK (1997) coincide [see text). Drift estimates and related curves for increasing numerical values 
of the leading bandwidths are in column 2, 3 and 4. For a discussion of the bandwidth choices see 
text.
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Figure 12: The underlying process is the CIR process 2. We simulate it by antithetic-variate 
method for 5000 daily observations, with 1000 repetitions. Diffusion and drift estimates obtained 
using the methods in Stanton (1997), JK (1997) and BP (1998) are in row 1, row 2 and row 3. 
respectively. The solid lines are the estimated functions averaged across the 1000 repetitions. The 
dotted lines are the true functions. The dashed lines are 75 and 25 percentiles. Diffusion estimates 
and related curves are in the first column. Notice that the estimated diffusions in Stanton (1997) 
and JK (1997) coincide [see text]. Drift estimates and related curves for increasing numerical values 
of the leading bandwidths are in column 2, 3 and 4. For a discussion of the bandwidth choices see 
text.
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3

Figure 13: The underlying process is the Al't-Sahalia process. We simulate it by antithetic- 
variate method for 5000 daily observations, with 1000 repetitions. Diffusion and drift estimates 
obtained using the methods in Stanton (1997), JK (1997) and BP (1998) are in row 1, row 2 and row 
3, respectively. The solid lines are the estimated functions averaged across the 1000 repetitions. The 
dotted lines are the true functions. The dashed lines are 75 and 25 percentiles. Diffusion estimates 
and related curves are in the first column. Notice that the estimated diffusions in Stanton (1997) 
and JK (1997) coincide [see textj. Drift estimates and related curves for increasing numerical values 
of the leading bandwidths are in column 2, 3 and 4. For a discussion of the bandwidth choices see 
text.

156

Reproduced with permission o f the copyright owner. Further reproduction prohibited w ithout permission.



www.manaraa.com

Figure 14: The underlying process is the “experimental" process. We simulate it by antithetic- 
variate method for 5000 daily observations, with 1000 repetitions. Diffusion and drift estimates 
obtained using the methods in Stanton (1997), JK (1997) and BP (1998) are in row 1, row 2 and row 
3, respectively. The solid lines are the estimated functions averaged across the 1000 repetitions. The 
dotted lines are the true functions. The dashed lines are 75 and 25 percentiles. Diffusion estimates 
and related curves are in the first column. Notice that the estimated diffusions in Stanton (1997) 
and JK (1997) coincide [see text]. Drift estimates and related curves for increasing numerical values 
of the leading bandwidths are in column 2, 3 and 4. For a discussion of the bandwidth choices see 
text.
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t

Figure 15: Finite sample and asymptotic distributions for the Stanton (1997) and BP (1998) 
estimators. The underlying process is the CIR process 1. Row 1 and row 2 contain the pointwise 
limiting densities [dashed linesj of the drift estimates and their finite sample counterparts in the 
case of Stanton (1997) and BP (1998), respectively. In row 3 and row 4 are plots of the pointwise 
limiting and finite sample distributions of the diffusion estimates in the Stanton's and BP’s case, 
respectively. We plot the distributions for values of the underlying process that range from 5% up 
to 15%.
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Figure 16: Finite sample and asymptotic distributions for the Stanton (1997) and BP (1998) 
estimators. The underlying process is the CIR process 2. Row 1 and row 2 contain the pointwise 
limiting densities [dashed lines] of the drift: estimates and their finite sample counterparts in the 
case of Stanton (1997) and BP (1998), respectively. In row 3 and row 4 are plots of the pointwise 
limiting and finite sample distributions of the diffusion estimates in the Stanton's and BP’s case, 
respectively. We plot the distributions for values of the underlying process that range from 5% up 
to 15%.
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Figure 17: Finite sample and asymptotic distributions for the Stanton (1997) and BP (1998) 
estimators. The underlying process is the Alt-Sahalia process. Row 1 and row 2 contain the 
pointwise limiting densities [dashed lines] of the drift estimates and their finite sample counterparts 
in the case of Stanton (1997) and BP (1998), respectively. In row 3 and row 4 are plots of the 
pointwise limiting and finite sample distributions of the diffusion estimates in the Stanton’s and 
BP’s case, respectively. We plot the distributions for values of the underlying process that range 
from 5% up to 12%.
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